Finished overhaul of version-1

This commit is contained in:
Andrew Dinh 2019-01-31 13:22:02 -08:00
parent 5f63eeb57e
commit 0dcdd1049d
9 changed files with 1059 additions and 606 deletions

5
.gitignore vendored
View File

@ -1,8 +1,5 @@
__pycache__/StockData.cpython-37.pyc __pycache__/StockData.cpython-37.pyc
__pycache__/ __pycache__/
*.pyc *.pyc
quickstart.py
creds.json
test/ test/
.vscode/ .vscode/
listGoogle.py

View File

@ -12,17 +12,19 @@ import numpy
from urllib.request import urlopen from urllib.request import urlopen
import re import re
class ExpenseRatio: class ExpenseRatio:
def __init__(self): def __init__(self):
def main(): # For testing purposes def main(): # For testing purposes
''' '''
a = [1,2,3] a = [1,2,3]
b = [2,4,6] b = [2,4,6]
c = numpy.corrcoef(a, b)[0, 1] c = numpy.corrcoef(a, b)[0, 1]
print(c) print(c)
''' '''
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -1,24 +1,47 @@
# Python file for general functions # Python file for general functions
class Functions: def getNearest(items, pivot):
def getNearest(items, pivot): return min(items, key=lambda x: abs(x - pivot))
return min(items, key=lambda x: abs(x - pivot))
def stringToDate(date): def stringToDate(date):
from datetime import datetime from datetime import datetime
#datetime_object = datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
datetime_object = datetime.strptime(date, '%Y-%m-%d').date()
return(datetime_object)
'''
dateSplit = date.split('-')
year = int(dateSplit[0])
month = int(dateSplit[1])
day = int(dateSplit[2])
datetime_object = datetime.date(year, month, day)
'''
return datetime_object
def removeExtraDatesAndCloseValues(list1, list2):
# Returns the two lists but with the extra dates and corresponding close values removed
# list = [[dates], [close values]]
newList1 = [[], []]
newList2 = [[], []]
for i in range(0, len(list1[0]), 1):
for j in range(0, len(list2[0]), 1):
if list1[0][i] == list2[0][j]:
newList1[0].append(list1[0][i])
newList2[0].append(list1[0][i])
newList1[1].append(list1[1][i])
newList2[1].append(list2[1][j])
break
returnList = []
returnList.append(newList1)
returnList.append(newList2)
return returnList
#datetime_object = datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
datetime_object = datetime.strptime(date, '%Y-%m-%d').date()
return(datetime_object)
'''
dateSplit = date.split('-')
year = int(dateSplit[0])
month = int(dateSplit[1])
day = int(dateSplit[2])
datetime_object = datetime.date(year, month, day)
'''
return datetime_object
def main(): def main():
exit() exit()
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -16,6 +16,4 @@ To begin, run
Some ticker values to try: Some ticker values to try:
SPY, VFINX, AAPL, GOOGL SPY, VFINX, AAPL, GOOGL
`$ pip install numpy`
Created by Andrew Dinh from Dr. TJ Owens Gilroy Early College Academy Created by Andrew Dinh from Dr. TJ Owens Gilroy Early College Academy

File diff suppressed because it is too large Load Diff

View File

@ -11,10 +11,11 @@ from StockData import StockData
import datetime import datetime
from Functions import Functions from Functions import Functions
class Return: class Return:
def __init__(self, newListOfReturn = [], newTimeFrame = [], newBeta = 0, newStandardDeviation = 0, newNegativeStandardDeviation = 0, newMarketReturn = 0, newSize = 0, newSizeOfNeg = 0, newFirstLastDates = [], newAllLists = [], newAbsFirstLastDates = ''): def __init__(self, newListOfReturn=[], newTimeFrame=[], newBeta=0, newStandardDeviation=0, newNegativeStandardDeviation=0, newMarketReturn=0, newSize=0, newSizeOfNeg=0, newFirstLastDates=[], newAllLists=[], newAbsFirstLastDates=''):
self.listOfReturn = newListOfReturn self.listOfReturn = newListOfReturn
self.timeFrame = newTimeFrame # [years, months (30 days)] self.timeFrame = newTimeFrame # [years, months (30 days)]
self.beta = newBeta self.beta = newBeta
self.standardDeviation = newStandardDeviation self.standardDeviation = newStandardDeviation
self.negativeStandardDeviation = newNegativeStandardDeviation self.negativeStandardDeviation = newNegativeStandardDeviation
@ -32,12 +33,14 @@ class Return:
def getFirstLastDates(self, stock): def getFirstLastDates(self, stock):
firstLastDates = [] firstLastDates = []
timeFrame = self.timeFrame timeFrame = self.timeFrame
firstDate = datetime.datetime.now() - datetime.timedelta(days=timeFrame[0]*365) firstDate = datetime.datetime.now(
) - datetime.timedelta(days=timeFrame[0]*365)
firstDate = firstDate - datetime.timedelta(days=timeFrame[1]*30) firstDate = firstDate - datetime.timedelta(days=timeFrame[1]*30)
firstDate = ''.join((str(firstDate.year),'-', str(firstDate.month), '-', str(firstDate.day))) firstDate = ''.join(
(str(firstDate.year), '-', str(firstDate.month), '-', str(firstDate.day)))
lastDate = StockData.returnAbsFirstLastDates(stock)[1] lastDate = StockData.returnAbsFirstLastDates(stock)[1]
#print(lastDate) # print(lastDate)
firstLastDates.append(firstDate) firstLastDates.append(firstDate)
firstLastDates.append(lastDate) firstLastDates.append(lastDate)
return firstLastDates return firstLastDates
@ -60,19 +63,21 @@ class Return:
if firstDateExists == False: if firstDateExists == False:
print("Could not find first date. Changing first date to closest date") print("Could not find first date. Changing first date to closest date")
tempDate = Functions.stringToDate(firstDate) # Change to datetime tempDate = Functions.stringToDate(firstDate) # Change to datetime
print('Original first date:', tempDate) print('Original first date:', tempDate)
#tempDate = datetime.date(2014,1,17) #tempDate = datetime.date(2014,1,17)
newFirstDate = Functions.getNearest(finalDatesAndClose2[0], tempDate) newFirstDate = Functions.getNearest(
finalDatesAndClose2[0], tempDate)
print('New first date:', newFirstDate) print('New first date:', newFirstDate)
firstDate = str(newFirstDate) firstDate = str(newFirstDate)
if lastDateExists == False: if lastDateExists == False:
print("Could not find final date. Changing final date to closest date") print("Could not find final date. Changing final date to closest date")
tempDate2 = Functions.stringToDate(lastDate) # Change to datetime tempDate2 = Functions.stringToDate(lastDate) # Change to datetime
print('Original final date:', tempDate2) print('Original final date:', tempDate2)
#tempDate2 = datetime.date(2014,1,17) #tempDate2 = datetime.date(2014,1,17)
newLastDate = Functions.getNearest(finalDatesAndClose2[0], tempDate2) newLastDate = Functions.getNearest(
finalDatesAndClose2[0], tempDate2)
print('New final date:', newLastDate) print('New final date:', newLastDate)
lastDate = str(newLastDate) lastDate = str(newLastDate)
@ -97,7 +102,8 @@ class Return:
print('Close values:', firstClose, '...', lastClose) print('Close values:', firstClose, '...', lastClose)
fullUnadjustedReturn = float(lastClose/firstClose) fullUnadjustedReturn = float(lastClose/firstClose)
unadjustedReturn = fullUnadjustedReturn**(1/(self.timeFrame[0]+(self.timeFrame[1])*.1)) unadjustedReturn = fullUnadjustedReturn**(
1/(self.timeFrame[0]+(self.timeFrame[1])*.1))
return unadjustedReturn return unadjustedReturn
def getBeta(self): def getBeta(self):
@ -113,9 +119,9 @@ class Return:
for i in range(0, len(finalDates), 1): for i in range(0, len(finalDates), 1):
if finalDates[i] == str(firstDate): if finalDates[i] == str(firstDate):
firstClose = finalClose[i] firstClose = finalClose[i]
55ggbh
#list1 = # list1 =
list2 = [1,2,4,1] list2 = [1, 2, 4, 1]
print(numpy.corrcoef(list1, list2)[0, 1]) print(numpy.corrcoef(list1, list2)[0, 1])
@ -138,7 +144,7 @@ class Return:
timeFrameMonth = 0 timeFrameMonth = 0
print(timeFrameMonth) print(timeFrameMonth)
self.timeFrame.append(timeFrameMonth) self.timeFrame.append(timeFrameMonth)
#print(self.timeFrame) # print(self.timeFrame)
self.firstLastDates = Return.getFirstLastDates(self, stock) self.firstLastDates = Return.getFirstLastDates(self, stock)
print('Dates: ', self.firstLastDates) print('Dates: ', self.firstLastDates)
@ -149,10 +155,10 @@ class Return:
print('\nGetting unadjusted return') print('\nGetting unadjusted return')
unadjustedReturn = Return.getUnadjustedReturn(self, stock) unadjustedReturn = Return.getUnadjustedReturn(self, stock)
self.listOfReturn.append(unadjustedReturn) self.listOfReturn.append(unadjustedReturn)
print('Average annual return for the past', self.timeFrame[0], 'years and', self.timeFrame[1], 'months: ', end='') print('Average annual return for the past',
self.timeFrame[0], 'years and', self.timeFrame[1], 'months: ', end='')
print((self.listOfReturn[0]-1)*100, '%', sep='') print((self.listOfReturn[0]-1)*100, '%', sep='')
def main(self, stock): def main(self, stock):
print('Beginning StockReturn.py') print('Beginning StockReturn.py')
@ -169,12 +175,14 @@ class Return:
print('\nGetting unadjusted return') print('\nGetting unadjusted return')
unadjustedReturn = Return.getUnadjustedReturn(self, stock) unadjustedReturn = Return.getUnadjustedReturn(self, stock)
self.listOfReturn.append(unadjustedReturn) self.listOfReturn.append(unadjustedReturn)
print('Average annual return for the past', self.timeFrame[0], 'years and', self.timeFrame[1], 'months: ', end='') print('Average annual return for the past',
self.timeFrame[0], 'years and', self.timeFrame[1], 'months: ', end='')
print((self.listOfReturn[0]-1)*100, '%', sep='') print((self.listOfReturn[0]-1)*100, '%', sep='')
#print('\nGetting beta') #print('\nGetting beta')
#beta = Return.getBeta(self, stock) #beta = Return.getBeta(self, stock)
def main(): def main():
stockName = 'spy' stockName = 'spy'
stock1 = StockData(stockName) stock1 = StockData(stockName)
@ -186,5 +194,6 @@ def main():
Return.main(stock1Return, stock1) Return.main(stock1Return, stock1)
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -1,54 +0,0 @@
# https://support.google.com/docs/answer/3093281?hl=en
# Historical data cannot be downloaded or accessed via the Sheets API or Apps Script. If you attempt to do so, you will see a #N/A error in place of the values in the corresponding cells of your spreadsheet.
import gspread, time, webbrowser, msvcrt
from oauth2client.service_account import ServiceAccountCredentials
def main():
scope = ['https://spreadsheets.google.com/feeds',
'https://www.googleapis.com/auth/drive']
credentials = ServiceAccountCredentials.from_json_keyfile_name('creds.json', scope)
gc = gspread.authorize(credentials)
'''
# Just by ID:
#sheet = gc.open_by_key('1YS8qBQCXKNfSgQgXeUdSGOd6lM2wm-inV0_1YE36vQM')
sheet = gc.open_by_url('https://docs.google.com/spreadsheets/d/1YS8qBQCXKNfSgQgXeUdSGOd6lM2wm-inV0_1YE36vQM')
worksheet = sheet.get_worksheet(0)
worksheet.update_acell('B1', 'bingo!')
#worksheet.update_cell(1, 2, 'Bingo!')
val = worksheet.acell('B1').value
#val = worksheet.cell(1, 2).value
print(val)
'''
url = 'https://docs.google.com/spreadsheets/d/1YS8qBQCXKNfSgQgXeUdSGOd6lM2wm-inV0_1YE36vQM'
surl = 'https://www.andrewkdinh.com/u/listGoogle'
print("Opening", url)
#webbrowser.open(surl)
sheet = gc.open_by_url(url)
worksheet = sheet.get_worksheet(0)
print('Writing Google Finance function to A1')
worksheet.update_cell(1, 1, '=GOOGLEFINANCE("GOOG", "price", DATE(2014,1,1), DATE(2014,12,31), "DAILY")')
print('\nOpening link to the Google Sheet. Please download the file as comma-separated values (.csv) and move it to the directory of this Python file',
'\nFile > Download as > Comma-separated values(.csv,currentsheet)')
print("If the link did not open, please go to", surl)
print("Press any key to continue")
#time.sleep(45)
'''
for i in range(60, 0, -1):
print(i, end='\r')
time.sleep(1)
'''
waiting = True
while waiting == True:
if msvcrt.kbhit():
waiting = False
print("e")
#val = worksheet.acell('A1').value
#print(val)
if __name__ == '__main__':
main()

569
main.py
View File

@ -1,55 +1,509 @@
# main.py # main.py
# Andrew Dinh # Andrew Dinh
# Python 3.6.1 # Python 3.6.7
# Description:
'''
Asks users for mutual funds/stocks to compare
Asks to be compared (expense ratio, turnover, market capitalization, or persistence)
Asks for time period (Possibly: 1 year, 5 years, 10 years)
Makes the mutual funds as class Stock
Gets data from each API
Compare and contrast dates and end changeOverTime for set time period
NOTES: Later can worry about getting close values to make a graph or something
Gives correlation value using equation at the end (from 0 to 1)
FIRST TESTING WITH EXPENSE RATIO import requests
import json
import datetime
import numpy
import Functions
# API Keys
apiAV = 'O42ICUV58EIZZQMU'
# apiBarchart = 'a17fab99a1c21cd6f847e2f82b592838'
apiBarchart = 'f40b136c6dc4451f9136bb53b9e70ffa'
apiTiingo = '2e72b53f2ab4f5f4724c5c1e4d5d4ac0af3f7ca8'
apiTradier = 'n26IFFpkOFRVsB5SNTVNXicE5MPD'
# If you're going to take these API keys and abuse it, you should really reconsider your life priorities
'''
API Keys:
Alpha Vantage API Key: O42ICUV58EIZZQMU
Barchart API Key: a17fab99a1c21cd6f847e2f82b592838
Possible other one? f40b136c6dc4451f9136bb53b9e70ffa
150 getHistory queries per day
Tiingo API Key: 2e72b53f2ab4f5f4724c5c1e4d5d4ac0af3f7ca8
Tradier API Key: n26IFFpkOFRVsB5SNTVNXicE5MPD
Monthly Bandwidth = 5 GB
Hourly Requests = 500
Daily Requests = 20,000
Symbol Requests = 500
Mutual funds:
Yes: Alpha Vantage, Tiingo
No: IEX, Barchart
''' '''
class Stock:
# GLOBAL VARIABLES
timeFrame = []
benchmarkDates = []
benchmarkCloseValues = []
benchmarkUnadjustedReturn = 0
def __init__(self):
# BASIC DATA
self.name = '' # Ticker symbol
self.allDates = []
self.allCloseValues = []
self.dates = []
self.closeValues = []
self.datesMatchBenchmark = []
self.closeValuesMatchBenchmark = []
# CALCULATED RETURN
self.unadjustedReturn = 0
self.sortino = 0
self.sharpe = 0
self.treynor = 0
self.alpha = 0
self.beta = 0
self.standardDeviation = 0
self.negStandardDeviation = 0
# INDICATOR VALUES
self.expenseRatio = 0
self.assetSize = 0
self.turnover = 0
self.persistence = [] # [Years, Months]
# CALCULATED VALUES FOR INDICATORS
self.correlation = 0
self.regression = 0
def setName(self, newName):
self.name = newName
def getName(self):
return self.name
def getAllDates(self):
return self.allDates
def getAllCloseValues(self):
return self.allCloseValues
def IEX(self):
print('IEX')
url = ''.join(
('https://api.iextrading.com/1.0/stock/', self.name, '/chart/5y'))
#link = "https://api.iextrading.com/1.0/stock/spy/chart/5y"
print("\nSending request to:", url)
f = requests.get(url)
json_data = f.text
if json_data == 'Unknown symbol' or f.status_code == 404:
print("IEX not available")
return 'Not available'
loaded_json = json.loads(json_data)
listIEX = []
print("\nFinding all dates given")
allDates = []
for i in range(0, len(loaded_json), 1): # If you want to do oldest first
# for i in range(len(loaded_json)-1, -1, -1):
line = loaded_json[i]
date = line['date']
allDates.append(date)
listIEX.append(allDates)
print(len(listIEX[0]), "dates")
print("\nFinding close values for each date")
values = []
for i in range(0, len(loaded_json), 1): # If you want to do oldest first
# for i in range(len(loaded_json)-1, -1, -1):
line = loaded_json[i]
value = line['close']
values.append(value)
listIEX.append(values)
print(len(listIEX[1]), "close values")
return listIEX
def AV(self):
print('Alpha Vantage')
listAV = []
url = ''.join(('https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=',
self.name, '&outputsize=full&apikey=', apiAV))
# https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&outputsize=full&apikey=demo
print("\nSending request to:", url)
print("(This will take a while)")
f = requests.get(url)
json_data = f.text
loaded_json = json.loads(json_data)
if len(loaded_json) == 1 or f.status_code == 404:
print("Alpha Vantage not available")
return 'Not available'
dailyTimeSeries = loaded_json['Time Series (Daily)']
listOfDates = list(dailyTimeSeries)
# listAV.append(listOfDates)
listAV.append(list(reversed(listOfDates)))
print("\nFinding close values for each date")
values = []
for i in range(0, len(listOfDates), 1):
temp = listOfDates[i]
loaded_json2 = dailyTimeSeries[temp]
#value = loaded_json2['4. close']
value = loaded_json2['5. adjusted close']
values.append(value)
# listAV.append(values)
listAV.append(list(reversed(values)))
print(len(listAV[1]), "close values")
return listAV
def Tiingo(self):
print('Tiingo')
token = ''.join(('Token ', apiTiingo))
headers = {
'Content-Type': 'application/json',
'Authorization': token
}
url = ''.join(('https://api.tiingo.com/tiingo/daily/', self.name))
print("\nSending request to:", url)
f = requests.get(url, headers=headers)
loaded_json = f.json()
if len(loaded_json) == 1 or f.status_code == 404:
print("Tiingo not available")
return 'Not available'
listTiingo = []
print("\nFinding first and last date")
firstDate = loaded_json['startDate']
lastDate = loaded_json['endDate']
print(firstDate, '...', lastDate)
print("\nFinding all dates given", end='')
dates = []
values = []
url2 = ''.join((url, '/prices?startDate=',
firstDate, '&endDate=', lastDate))
# https://api.tiingo.com/tiingo/daily/<ticker>/prices?startDate=2012-1-1&endDate=2016-1-1
print("\nSending request to:", url2, '\n')
requestResponse2 = requests.get(url2, headers=headers)
loaded_json2 = requestResponse2.json()
for i in range(0, len(loaded_json2)-1, 1):
line = loaded_json2[i]
dateWithTime = line['date']
temp = dateWithTime.split('T00:00:00.000Z')
date = temp[0]
dates.append(date)
value = line['close']
values.append(value)
listTiingo.append(dates)
print(len(listTiingo[0]), "dates")
print("Finding close values for each date")
# Used loop from finding dates
listTiingo.append(values)
print(len(listTiingo[1]), "close values")
return listTiingo
def datesAndClose(self):
print('\n', Stock.getName(self), sep='')
# sourceList = ['AV', 'Tiingo', 'IEX'] # Change back to this later
sourceList = ['Tiingo', 'IEX', 'AV']
# Use each source until you get a value
for j in range(0, len(sourceList), 1):
source = sourceList[j]
print('\nSource being used: ', source)
if source == 'AV':
datesAndCloseList = Stock.AV(self)
elif source == 'Tiingo':
datesAndCloseList = Stock.Tiingo(self)
elif source == 'IEX':
datesAndCloseList = Stock.IEX(self)
if datesAndCloseList != 'Not available':
break
else:
#print(sourceList[j], 'does not have data available')
if j == len(sourceList)-1:
print('\nNo sources have data for', self.name)
return
# FIGURE OUT WHAT TO DO HERE
# Convert dates to datetime
allDates = datesAndCloseList[0]
for j in range(0, len(allDates), 1):
allDates[j] = Functions.stringToDate(allDates[j])
datesAndCloseList[0] = allDates
return datesAndCloseList
def datesAndClose2(self):
print('Shortening list to fit time frame')
# Have to do this because if I just make dates = self.allDates & closeValues = self.allCloseValues, then deleting from dates & closeValues also deletes it from self.allDates & self.allCloseValues (I'm not sure why)
dates = []
closeValues = []
for i in range(0, len(self.allDates), 1):
dates.append(self.allDates[i])
closeValues.append(self.allCloseValues[i])
firstDate = datetime.datetime.now().date() - datetime.timedelta(
days=self.timeFrame[0]*365) - datetime.timedelta(days=self.timeFrame[1]*30)
print('\n', self.timeFrame[0], ' years and ',
self.timeFrame[1], ' months ago: ', firstDate, sep='')
closestDate = Functions.getNearest(dates, firstDate)
if closestDate != firstDate:
print('Closest date available for', self.name, ':', closestDate)
firstDate = closestDate
else:
print(self.name, 'has a close value for', firstDate)
# Remove dates in list up to firstDate
while dates[0] != firstDate:
dates.remove(dates[0])
# Remove close values until list is same length as dates
while len(closeValues) != len(dates):
closeValues.remove(closeValues[0])
datesAndCloseList2 = []
datesAndCloseList2.append(dates)
datesAndCloseList2.append(closeValues)
print(len(dates), 'dates')
print(len(closeValues), 'close values')
return datesAndCloseList2
def unadjustedReturn(self):
unadjustedReturn = (float(self.closeValues[len(
self.closeValues)-1]/self.closeValues[0])**(1/(self.timeFrame[0]+(self.timeFrame[1])*.1)))-1
print('Annual unadjusted return:', unadjustedReturn)
return unadjustedReturn
def beta(self, benchmarkMatchDatesAndCloseValues):
beta = numpy.corrcoef(self.closeValuesMatchBenchmark,
benchmarkMatchDatesAndCloseValues[1])[0, 1]
print('Beta:', beta)
return beta
def isConnected():
import socket # To check internet connection
try:
# connect to the host -- tells us if the host is actually reachable
socket.create_connection(("www.andrewkdinh.com", 80))
print('Internet connection is good!')
return True
except OSError:
# pass
print("No internet connection!")
return False
def checkPackages():
import importlib.util
import sys
packagesInstalled = True
packages = ['requests', 'numpy']
for i in range(0, len(packages), 1):
package_name = packages[i]
spec = importlib.util.find_spec(package_name)
if spec is None:
print(
package_name +
" is not installed\nPlease type in 'pip install -r requirements.txt' to install all required packages")
packagesInstalled = False
return packagesInstalled
def benchmarkInit():
# Treat benchmark like stock
benchmarkTicker = ''
while benchmarkTicker == '':
benchmarks = ['S&P500', 'DJIA', 'Russell 3000', 'MSCI EAFE']
benchmarksTicker = ['SPY', 'DJIA', 'VTHR', 'EFT']
print('\nList of benchmarks:', benchmarks)
# benchmark = str(input('Benchmark to compare to: '))
benchmark = 'S&P500'
for i in range(0, len(benchmarks), 1):
if benchmark == benchmarks[i]:
benchmarkTicker = benchmarksTicker[i]
if benchmarkTicker == '':
print('Benchmark not found. Please type in a benchmark from the list')
print(benchmark, ' (', benchmarkTicker, ')', sep='')
benchmark = Stock()
benchmark.setName(benchmarkTicker)
return benchmark
def stocksInit():
listOfStocks = []
# numberOfStocks = int(input('\nHow many stocks/mutual funds/ETFs would you like to analyze? '))
numberOfStocks = 1
print('\nHow many stocks/mutual funds/ETFs would you like to analyze? ', numberOfStocks)
for i in range(0, numberOfStocks, 1):
print('Stock', i + 1, ': ', end='')
#stockName = str(input())
stockName = 'FBGRX'
print(stockName)
listOfStocks.append(stockName)
listOfStocks[i] = Stock()
listOfStocks[i].setName(stockName)
return listOfStocks
def timeFrameInit():
print('\nPlease enter the time frame in years and months (30 days)')
print("Years: ", end='')
#years = int(input())
years = 5
print(years)
print("Months: ", end='')
#months = int(input())
months = 0
print(months)
timeFrame = []
timeFrame.append(years)
timeFrame.append(months)
return timeFrame
def dataMain(listOfStocks):
print('\nGathering dates and close values')
for i in range(0, len(listOfStocks), 1):
datesAndCloseList = Stock.datesAndClose(listOfStocks[i])
listOfStocks[i].allDates = datesAndCloseList[0]
listOfStocks[i].allCloseValues = datesAndCloseList[1]
# Clip list to fit time frame
datesAndCloseList2 = Stock.datesAndClose2(listOfStocks[i])
listOfStocks[i].dates = datesAndCloseList2[0]
listOfStocks[i].closeValues = datesAndCloseList2[1]
def returnMain(benchmark, listOfStocks):
print('\nCalculating unadjusted return, Sharpe ratio, Sortino ratio, and Treynor ratio\n')
print(benchmark.name)
benchmark.unadjustedReturn = Stock.unadjustedReturn(benchmark)
# Make benchmark data global
# Maybe remove this later
Stock.benchmarkDates = benchmark.dates
Stock.benchmarkCloseValues = benchmark.closeValues
Stock.benchmarkUnadjustedReturn = benchmark.unadjustedReturn
for i in range(0, len(listOfStocks), 1):
print(listOfStocks[i].name)
# Make sure each date has a value for both the benchmark and the stock
list1 = []
list2 = []
list1.append(listOfStocks[i].dates)
list1.append(listOfStocks[i].closeValues)
list2.append(Stock.benchmarkDates)
list2.append(Stock.benchmarkCloseValues)
temp = Functions.removeExtraDatesAndCloseValues(list1, list2)
listOfStocks[i].datesMatchBenchmark = temp[0][0]
listOfStocks[i].closeValuesMatchBenchmark = temp[0][1]
benchmarkMatchDatesAndCloseValues = temp[1]
listOfStocks[i].unadjustedReturn = Stock.unadjustedReturn(
listOfStocks[i])
listOfStocks[i].beta = Stock.beta(
listOfStocks[i], benchmarkMatchDatesAndCloseValues)
def main():
# Test internet connection
internetConnection = isConnected()
if not internetConnection:
return
# Check that all required packages are installed
packagesInstalled = checkPackages()
if not packagesInstalled:
return
# Choose benchmark and makes it class Stock
benchmark = benchmarkInit()
# Add it to a list to work with other functions
benchmarkAsList = []
benchmarkAsList.append(benchmark)
# Asks for stock(s) ticker and makes them class Stock
listOfStocks = stocksInit()
# Determine time frame [Years, Months]
timeFrame = timeFrameInit()
Stock.timeFrame = timeFrame # Needs to be a global variable for all stocks
# Gather data for benchmark and stock(s)
dataMain(benchmarkAsList)
dataMain(listOfStocks)
# Calculate return for benchmark and stock(s)
returnMain(benchmark, listOfStocks)
if __name__ == "__main__":
main()
'''
from StockData import StockData from StockData import StockData
from StockReturn import Return from StockReturn import Return
listOfStocksData = [] listOfStocksData = []
listOfStocksReturn = [] listOfStocksReturn = []
#numberOfStocks = int(input("How many stocks or mutual funds would you like to analyze? ")) # CHANGE BACK LATER # numberOfStocks = int(input("How many stocks or mutual funds would you like to analyze? ")) # CHANGE BACK LATER
numberOfStocks = 1 numberOfStocks = 1
for i in range(0, numberOfStocks, 1): for i in range(0, numberOfStocks, 1):
print("Stock", i+1, ": ", end='') print("Stock", i+1, ": ", end='')
stockName = str(input()) stockName = str(input())
listOfStocksData.append(i) listOfStocksData.append(i)
listOfStocksData[i] = StockData() listOfStocksData[i] = StockData()
listOfStocksData[i].setName(stockName) listOfStocksData[i].setName(stockName)
# print(listOfStocksData[i].name) # print(listOfStocksData[i].name)
#listOfStocksReturn.append(i) # listOfStocksReturn.append(i)
#listOfStocksReturn[i] = StockReturn() # listOfStocksReturn[i] = StockReturn()
# Decide on a benchmark # Decide on a benchmark
benchmarkTicker = '' benchmarkTicker = ''
while benchmarkTicker == '': while benchmarkTicker == '':
listOfBenchmarks = ['S&P500', 'DJIA', 'Russell 3000', 'MSCI EAFE'] listOfBenchmarks = ['S&P500', 'DJIA', 'Russell 3000', 'MSCI EAFE']
listOfBenchmarksTicker = ['SPY', 'DJIA', 'VTHR', 'EFT'] listOfBenchmarksTicker = ['SPY', 'DJIA', 'VTHR', 'EFT']
print('\nList of benchmarks:', listOfBenchmarks) print('\nList of benchmarks:', listOfBenchmarks)
#benchmark = str(input('Benchmark to compare to: ')) # benchmark = str(input('Benchmark to compare to: '))
benchmark = 'S&P500' benchmark = 'S&P500'
for i in range(0,len(listOfBenchmarks), 1): for i in range(0,len(listOfBenchmarks), 1):
if benchmark == listOfBenchmarks[i]: if benchmark == listOfBenchmarks[i]:
benchmarkTicker = listOfBenchmarksTicker[i] benchmarkTicker = listOfBenchmarksTicker[i]
i = len(listOfBenchmarks) i = len(listOfBenchmarks)
if benchmarkTicker == '': if benchmarkTicker == '':
print('Benchmark not found. Please type in a benchmark from the list') print('Benchmark not found. Please type in a benchmark from the list')
print('\n', benchmark, ' (', benchmarkTicker, ')', sep='') print('\n', benchmark, ' (', benchmarkTicker, ')', sep='')
@ -66,10 +520,10 @@ print('Time Frame [years, months]:', timeFrame)
sumOfListLengths = 0 sumOfListLengths = 0
for i in range(0, numberOfStocks, 1): for i in range(0, numberOfStocks, 1):
print('\n', listOfStocksData[i].name, sep='') print('\n', listOfStocksData[i].name, sep='')
StockData.main(listOfStocksData[i]) StockData.main(listOfStocksData[i])
# Count how many stocks are available # Count how many stocks are available
sumOfListLengths = sumOfListLengths + len(StockData.returnAllLists(listOfStocksData[i])) sumOfListLengths = sumOfListLengths + len(StockData.returnAllLists(listOfStocksData[i]))
if sumOfListLengths == 0: if sumOfListLengths == 0:
print("No sources have data for given stocks") print("No sources have data for given stocks")
@ -77,41 +531,40 @@ if sumOfListLengths == 0:
# Find return over time using either Jensen's Alpha, Sharpe Ratio, Sortino Ratio, or Treynor Ratio # Find return over time using either Jensen's Alpha, Sharpe Ratio, Sortino Ratio, or Treynor Ratio
for i in range(0, numberOfStocks, 1): for i in range(0, numberOfStocks, 1):
print('\n', listOfStocksData[i].name, sep='') print('\n', listOfStocksData[i].name, sep='')
#StockReturn.main(listOfStocksReturn[i]) # StockReturn.main(listOfStocksReturn[i])
# Runs correlation or regression study # Runs correlation or regression study
# print(listOfStocksData[0].name, listOfStocksData[0].absFirstLastDates, listOfStocksData[0].finalDatesAndClose) # print(listOfStocksData[0].name, listOfStocksData[0].absFirstLastDates, listOfStocksData[0].finalDatesAndClose)
indicatorFound = False indicatorFound = False
while indicatorFound == False: while indicatorFound == False:
print("1. Expense Ratio\n2. Asset Size\n3. Turnover\n4. Persistence\nWhich indicator would you like to look at? ", end='') print("1. Expense Ratio\n2. Asset Size\n3. Turnover\n4. Persistence\nWhich indicator would you like to look at? ", end='')
#indicator = str(input()) # CHANGE BACK TO THIS LATER
indicator = 'Expense Ratio'
print(indicator, end='')
indicatorFound = True # indicator = str(input()) # CHANGE BACK TO THIS LATER
print('\n', end='') indicator = 'Expense Ratio'
print(indicator, end='')
if indicator == 'Expense Ratio' or indicator == '1' or indicator == 'expense ratio': indicatorFound = True
#from ExpenseRatio import ExpenseRatio print('\n', end='')
print('\nExpense Ratio')
elif indicator == 'Asset Size' or indicator == '2' or indicator == 'asset size': if indicator == 'Expense Ratio' or indicator == '1' or indicator == 'expense ratio':
print('\nAsset Size') # from ExpenseRatio import ExpenseRatio
print('\nExpense Ratio')
elif indicator == 'Turnover' or indicator == '3' or indicator == 'turnover': elif indicator == 'Asset Size' or indicator == '2' or indicator == 'asset size':
print('\nTurnover') print('\nAsset Size')
elif indicator == 'Persistence' or indicator == '4' or indicator == 'persistence': elif indicator == 'Turnover' or indicator == '3' or indicator == 'turnover':
print('\nPersistence') print('\nTurnover')
else: elif indicator == 'Persistence' or indicator == '4' or indicator == 'persistence':
indicatorFound = False print('\nPersistence')
print('Invalid input, please enter indicator again')
else:
indicatorFound = False
print('Invalid input, please enter indicator again')
'''
stockName = 'IWV' stockName = 'IWV'
stock1 = Stock(stockName) stock1 = Stock(stockName)
print("Finding available dates and close values for", stock1.name) print("Finding available dates and close values for", stock1.name)

View File

@ -1,2 +1,2 @@
requests==2.21.0 requests~=2.21.0
numpy==1.15.4 numpy~=1.15.4