mirror of
https://github.com/andrewkdinh/fund-indicators.git
synced 2024-11-24 09:14:18 -08:00
573 lines
18 KiB
Python
573 lines
18 KiB
Python
# main.py
|
|
# Andrew Dinh
|
|
# Python 3.6.7
|
|
|
|
import requests
|
|
import json
|
|
import datetime
|
|
import numpy
|
|
import Functions
|
|
|
|
# API Keys
|
|
apiAV = 'O42ICUV58EIZZQMU'
|
|
# apiBarchart = 'a17fab99a1c21cd6f847e2f82b592838'
|
|
apiBarchart = 'f40b136c6dc4451f9136bb53b9e70ffa'
|
|
apiTiingo = '2e72b53f2ab4f5f4724c5c1e4d5d4ac0af3f7ca8'
|
|
apiTradier = 'n26IFFpkOFRVsB5SNTVNXicE5MPD'
|
|
# If you're going to take these API keys and abuse it, you should really reconsider your life priorities
|
|
|
|
'''
|
|
API Keys:
|
|
Alpha Vantage API Key: O42ICUV58EIZZQMU
|
|
Barchart API Key: a17fab99a1c21cd6f847e2f82b592838
|
|
Possible other one? f40b136c6dc4451f9136bb53b9e70ffa
|
|
150 getHistory queries per day
|
|
Tiingo API Key: 2e72b53f2ab4f5f4724c5c1e4d5d4ac0af3f7ca8
|
|
Tradier API Key: n26IFFpkOFRVsB5SNTVNXicE5MPD
|
|
Monthly Bandwidth = 5 GB
|
|
Hourly Requests = 500
|
|
Daily Requests = 20,000
|
|
Symbol Requests = 500
|
|
|
|
Mutual funds:
|
|
Yes: Alpha Vantage, Tiingo
|
|
No: IEX, Barchart
|
|
'''
|
|
|
|
|
|
class Stock:
|
|
|
|
# GLOBAL VARIABLES
|
|
timeFrame = []
|
|
benchmarkDates = []
|
|
benchmarkCloseValues = []
|
|
benchmarkUnadjustedReturn = 0
|
|
|
|
def __init__(self):
|
|
# BASIC DATA
|
|
self.name = '' # Ticker symbol
|
|
self.allDates = []
|
|
self.allCloseValues = []
|
|
self.dates = []
|
|
self.closeValues = []
|
|
self.datesMatchBenchmark = []
|
|
self.closeValuesMatchBenchmark = []
|
|
|
|
# CALCULATED RETURN
|
|
self.unadjustedReturn = 0
|
|
self.sortino = 0
|
|
self.sharpe = 0
|
|
self.treynor = 0
|
|
self.alpha = 0
|
|
self.beta = 0
|
|
self.standardDeviation = 0
|
|
self.negStandardDeviation = 0
|
|
|
|
# INDICATOR VALUES
|
|
self.expenseRatio = 0
|
|
self.assetSize = 0
|
|
self.turnover = 0
|
|
self.persistence = [] # [Years, Months]
|
|
|
|
# CALCULATED VALUES FOR INDICATORS
|
|
self.correlation = 0
|
|
self.regression = 0
|
|
|
|
def setName(self, newName):
|
|
self.name = newName
|
|
|
|
def getName(self):
|
|
return self.name
|
|
|
|
def getAllDates(self):
|
|
return self.allDates
|
|
|
|
def getAllCloseValues(self):
|
|
return self.allCloseValues
|
|
|
|
def IEX(self):
|
|
print('IEX')
|
|
url = ''.join(
|
|
('https://api.iextrading.com/1.0/stock/', self.name, '/chart/5y'))
|
|
#link = "https://api.iextrading.com/1.0/stock/spy/chart/5y"
|
|
print("\nSending request to:", url)
|
|
f = requests.get(url)
|
|
json_data = f.text
|
|
if json_data == 'Unknown symbol' or f.status_code == 404:
|
|
print("IEX not available")
|
|
return 'Not available'
|
|
loaded_json = json.loads(json_data)
|
|
listIEX = []
|
|
|
|
print("\nFinding all dates given")
|
|
allDates = []
|
|
for i in range(0, len(loaded_json), 1): # If you want to do oldest first
|
|
# for i in range(len(loaded_json)-1, -1, -1):
|
|
line = loaded_json[i]
|
|
date = line['date']
|
|
allDates.append(date)
|
|
listIEX.append(allDates)
|
|
print(len(listIEX[0]), "dates")
|
|
|
|
print("\nFinding close values for each date")
|
|
values = []
|
|
for i in range(0, len(loaded_json), 1): # If you want to do oldest first
|
|
# for i in range(len(loaded_json)-1, -1, -1):
|
|
line = loaded_json[i]
|
|
value = line['close']
|
|
values.append(value)
|
|
listIEX.append(values)
|
|
print(len(listIEX[1]), "close values")
|
|
|
|
return listIEX
|
|
|
|
def AV(self):
|
|
print('Alpha Vantage')
|
|
listAV = []
|
|
url = ''.join(('https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=',
|
|
self.name, '&outputsize=full&apikey=', apiAV))
|
|
# https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&outputsize=full&apikey=demo
|
|
|
|
print("\nSending request to:", url)
|
|
print("(This will take a while)")
|
|
f = requests.get(url)
|
|
json_data = f.text
|
|
loaded_json = json.loads(json_data)
|
|
|
|
if len(loaded_json) == 1 or f.status_code == 404:
|
|
print("Alpha Vantage not available")
|
|
return 'Not available'
|
|
|
|
dailyTimeSeries = loaded_json['Time Series (Daily)']
|
|
listOfDates = list(dailyTimeSeries)
|
|
# listAV.append(listOfDates)
|
|
listAV.append(list(reversed(listOfDates)))
|
|
|
|
print("\nFinding close values for each date")
|
|
values = []
|
|
for i in range(0, len(listOfDates), 1):
|
|
temp = listOfDates[i]
|
|
loaded_json2 = dailyTimeSeries[temp]
|
|
#value = loaded_json2['4. close']
|
|
value = loaded_json2['5. adjusted close']
|
|
values.append(value)
|
|
# listAV.append(values)
|
|
listAV.append(list(reversed(values)))
|
|
print(len(listAV[1]), "close values")
|
|
|
|
return listAV
|
|
|
|
def Tiingo(self):
|
|
print('Tiingo')
|
|
token = ''.join(('Token ', apiTiingo))
|
|
headers = {
|
|
'Content-Type': 'application/json',
|
|
'Authorization': token
|
|
}
|
|
url = ''.join(('https://api.tiingo.com/tiingo/daily/', self.name))
|
|
print("\nSending request to:", url)
|
|
f = requests.get(url, headers=headers)
|
|
loaded_json = f.json()
|
|
if len(loaded_json) == 1 or f.status_code == 404:
|
|
print("Tiingo not available")
|
|
return 'Not available'
|
|
|
|
listTiingo = []
|
|
|
|
print("\nFinding first and last date")
|
|
firstDate = loaded_json['startDate']
|
|
lastDate = loaded_json['endDate']
|
|
print(firstDate, '...', lastDate)
|
|
|
|
print("\nFinding all dates given", end='')
|
|
dates = []
|
|
values = []
|
|
url2 = ''.join((url, '/prices?startDate=',
|
|
firstDate, '&endDate=', lastDate))
|
|
# https://api.tiingo.com/tiingo/daily/<ticker>/prices?startDate=2012-1-1&endDate=2016-1-1
|
|
print("\nSending request to:", url2, '\n')
|
|
requestResponse2 = requests.get(url2, headers=headers)
|
|
loaded_json2 = requestResponse2.json()
|
|
for i in range(0, len(loaded_json2)-1, 1):
|
|
line = loaded_json2[i]
|
|
dateWithTime = line['date']
|
|
temp = dateWithTime.split('T00:00:00.000Z')
|
|
date = temp[0]
|
|
dates.append(date)
|
|
|
|
value = line['close']
|
|
values.append(value)
|
|
listTiingo.append(dates)
|
|
print(len(listTiingo[0]), "dates")
|
|
|
|
print("Finding close values for each date")
|
|
# Used loop from finding dates
|
|
listTiingo.append(values)
|
|
print(len(listTiingo[1]), "close values")
|
|
|
|
return listTiingo
|
|
|
|
def datesAndClose(self):
|
|
print('\n', Stock.getName(self), sep='')
|
|
|
|
# sourceList = ['AV', 'Tiingo', 'IEX'] # Change back to this later
|
|
sourceList = ['Tiingo', 'IEX', 'AV']
|
|
# Use each source until you get a value
|
|
for j in range(0, len(sourceList), 1):
|
|
source = sourceList[j]
|
|
print('\nSource being used: ', source)
|
|
|
|
if source == 'AV':
|
|
datesAndCloseList = Stock.AV(self)
|
|
elif source == 'Tiingo':
|
|
datesAndCloseList = Stock.Tiingo(self)
|
|
elif source == 'IEX':
|
|
datesAndCloseList = Stock.IEX(self)
|
|
|
|
if datesAndCloseList != 'Not available':
|
|
break
|
|
else:
|
|
#print(sourceList[j], 'does not have data available')
|
|
if j == len(sourceList)-1:
|
|
print('\nNo sources have data for', self.name)
|
|
return
|
|
# FIGURE OUT WHAT TO DO HERE
|
|
|
|
# Convert dates to datetime
|
|
allDates = datesAndCloseList[0]
|
|
for j in range(0, len(allDates), 1):
|
|
allDates[j] = Functions.stringToDate(allDates[j])
|
|
datesAndCloseList[0] = allDates
|
|
|
|
return datesAndCloseList
|
|
|
|
def datesAndClose2(self):
|
|
print('Shortening list to fit time frame')
|
|
# Have to do this because if I just make dates = self.allDates & closeValues = self.allCloseValues, then deleting from dates & closeValues also deletes it from self.allDates & self.allCloseValues (I'm not sure why)
|
|
dates = []
|
|
closeValues = []
|
|
for i in range(0, len(self.allDates), 1):
|
|
dates.append(self.allDates[i])
|
|
closeValues.append(self.allCloseValues[i])
|
|
|
|
firstDate = datetime.datetime.now().date() - datetime.timedelta(
|
|
days=self.timeFrame[0]*365) - datetime.timedelta(days=self.timeFrame[1]*30)
|
|
print('\n', self.timeFrame[0], ' years and ',
|
|
self.timeFrame[1], ' months ago: ', firstDate, sep='')
|
|
closestDate = Functions.getNearest(dates, firstDate)
|
|
if closestDate != firstDate:
|
|
print('Closest date available for', self.name, ':', closestDate)
|
|
firstDate = closestDate
|
|
else:
|
|
print(self.name, 'has a close value for', firstDate)
|
|
|
|
# Remove dates in list up to firstDate
|
|
while dates[0] != firstDate:
|
|
dates.remove(dates[0])
|
|
|
|
# Remove close values until list is same length as dates
|
|
while len(closeValues) != len(dates):
|
|
closeValues.remove(closeValues[0])
|
|
|
|
datesAndCloseList2 = []
|
|
datesAndCloseList2.append(dates)
|
|
datesAndCloseList2.append(closeValues)
|
|
|
|
print(len(dates), 'dates')
|
|
print(len(closeValues), 'close values')
|
|
|
|
return datesAndCloseList2
|
|
|
|
def unadjustedReturn(self):
|
|
unadjustedReturn = (float(self.closeValues[len(
|
|
self.closeValues)-1]/self.closeValues[0])**(1/(self.timeFrame[0]+(self.timeFrame[1])*.1)))-1
|
|
print('Annual unadjusted return:', unadjustedReturn)
|
|
return unadjustedReturn
|
|
|
|
def beta(self, benchmarkMatchDatesAndCloseValues):
|
|
beta = numpy.corrcoef(self.closeValuesMatchBenchmark,
|
|
benchmarkMatchDatesAndCloseValues[1])[0, 1]
|
|
print('Beta:', beta)
|
|
return beta
|
|
|
|
|
|
def isConnected():
|
|
import socket # To check internet connection
|
|
try:
|
|
# connect to the host -- tells us if the host is actually reachable
|
|
socket.create_connection(("www.andrewkdinh.com", 80))
|
|
print('Internet connection is good!')
|
|
return True
|
|
except OSError:
|
|
# pass
|
|
print("No internet connection!")
|
|
return False
|
|
|
|
|
|
def checkPackages():
|
|
import importlib.util
|
|
import sys
|
|
|
|
packagesInstalled = True
|
|
packages = ['requests', 'numpy']
|
|
for i in range(0, len(packages), 1):
|
|
package_name = packages[i]
|
|
spec = importlib.util.find_spec(package_name)
|
|
if spec is None:
|
|
print(
|
|
package_name +
|
|
" is not installed\nPlease type in 'pip install -r requirements.txt' to install all required packages")
|
|
packagesInstalled = False
|
|
return packagesInstalled
|
|
|
|
|
|
def benchmarkInit():
|
|
# Treat benchmark like stock
|
|
benchmarkTicker = ''
|
|
while benchmarkTicker == '':
|
|
benchmarks = ['S&P500', 'DJIA', 'Russell 3000', 'MSCI EAFE']
|
|
benchmarksTicker = ['SPY', 'DJIA', 'VTHR', 'EFT']
|
|
print('\nList of benchmarks:', benchmarks)
|
|
|
|
# benchmark = str(input('Benchmark to compare to: '))
|
|
benchmark = 'S&P500'
|
|
|
|
for i in range(0, len(benchmarks), 1):
|
|
if benchmark == benchmarks[i]:
|
|
benchmarkTicker = benchmarksTicker[i]
|
|
|
|
if benchmarkTicker == '':
|
|
print('Benchmark not found. Please type in a benchmark from the list')
|
|
|
|
print(benchmark, ' (', benchmarkTicker, ')', sep='')
|
|
|
|
benchmark = Stock()
|
|
benchmark.setName(benchmarkTicker)
|
|
|
|
return benchmark
|
|
|
|
|
|
def stocksInit():
|
|
listOfStocks = []
|
|
|
|
# numberOfStocks = int(input('\nHow many stocks/mutual funds/ETFs would you like to analyze? '))
|
|
numberOfStocks = 1
|
|
|
|
print('\nHow many stocks/mutual funds/ETFs would you like to analyze? ', numberOfStocks)
|
|
|
|
for i in range(0, numberOfStocks, 1):
|
|
print('Stock', i + 1, ': ', end='')
|
|
#stockName = str(input())
|
|
|
|
stockName = 'FBGRX'
|
|
print(stockName)
|
|
|
|
listOfStocks.append(stockName)
|
|
listOfStocks[i] = Stock()
|
|
listOfStocks[i].setName(stockName)
|
|
|
|
return listOfStocks
|
|
|
|
|
|
def timeFrameInit():
|
|
print('\nPlease enter the time frame in years and months (30 days)')
|
|
print("Years: ", end='')
|
|
#years = int(input())
|
|
years = 5
|
|
print(years)
|
|
print("Months: ", end='')
|
|
#months = int(input())
|
|
months = 0
|
|
print(months)
|
|
|
|
timeFrame = []
|
|
timeFrame.append(years)
|
|
timeFrame.append(months)
|
|
return timeFrame
|
|
|
|
|
|
def dataMain(listOfStocks):
|
|
print('\nGathering dates and close values')
|
|
for i in range(0, len(listOfStocks), 1):
|
|
|
|
datesAndCloseList = Stock.datesAndClose(listOfStocks[i])
|
|
listOfStocks[i].allDates = datesAndCloseList[0]
|
|
listOfStocks[i].allCloseValues = datesAndCloseList[1]
|
|
|
|
# Clip list to fit time frame
|
|
datesAndCloseList2 = Stock.datesAndClose2(listOfStocks[i])
|
|
listOfStocks[i].dates = datesAndCloseList2[0]
|
|
listOfStocks[i].closeValues = datesAndCloseList2[1]
|
|
|
|
|
|
def returnMain(benchmark, listOfStocks):
|
|
print('\nCalculating unadjusted return, Sharpe ratio, Sortino ratio, and Treynor ratio\n')
|
|
print(benchmark.name)
|
|
benchmark.unadjustedReturn = Stock.unadjustedReturn(benchmark)
|
|
|
|
# Make benchmark data global
|
|
# Maybe remove this later
|
|
Stock.benchmarkDates = benchmark.dates
|
|
Stock.benchmarkCloseValues = benchmark.closeValues
|
|
Stock.benchmarkUnadjustedReturn = benchmark.unadjustedReturn
|
|
|
|
for i in range(0, len(listOfStocks), 1):
|
|
print(listOfStocks[i].name)
|
|
|
|
# Make sure each date has a value for both the benchmark and the stock
|
|
list1 = []
|
|
list2 = []
|
|
list1.append(listOfStocks[i].dates)
|
|
list1.append(listOfStocks[i].closeValues)
|
|
list2.append(Stock.benchmarkDates)
|
|
list2.append(Stock.benchmarkCloseValues)
|
|
temp = Functions.removeExtraDatesAndCloseValues(list1, list2)
|
|
listOfStocks[i].datesMatchBenchmark = temp[0][0]
|
|
listOfStocks[i].closeValuesMatchBenchmark = temp[0][1]
|
|
benchmarkMatchDatesAndCloseValues = temp[1]
|
|
|
|
listOfStocks[i].unadjustedReturn = Stock.unadjustedReturn(
|
|
listOfStocks[i])
|
|
listOfStocks[i].beta = Stock.beta(
|
|
listOfStocks[i], benchmarkMatchDatesAndCloseValues)
|
|
|
|
|
|
def main():
|
|
# Test internet connection
|
|
internetConnection = isConnected()
|
|
if not internetConnection:
|
|
return
|
|
|
|
# Check that all required packages are installed
|
|
packagesInstalled = checkPackages()
|
|
if not packagesInstalled:
|
|
return
|
|
|
|
# Choose benchmark and makes it class Stock
|
|
benchmark = benchmarkInit()
|
|
# Add it to a list to work with other functions
|
|
benchmarkAsList = []
|
|
benchmarkAsList.append(benchmark)
|
|
|
|
# Asks for stock(s) ticker and makes them class Stock
|
|
listOfStocks = stocksInit()
|
|
|
|
# Determine time frame [Years, Months]
|
|
timeFrame = timeFrameInit()
|
|
Stock.timeFrame = timeFrame # Needs to be a global variable for all stocks
|
|
|
|
# Gather data for benchmark and stock(s)
|
|
dataMain(benchmarkAsList)
|
|
dataMain(listOfStocks)
|
|
|
|
# Calculate return for benchmark and stock(s)
|
|
returnMain(benchmark, listOfStocks)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|
|
|
|
'''
|
|
from StockData import StockData
|
|
from StockReturn import Return
|
|
|
|
listOfStocksData = []
|
|
listOfStocksReturn = []
|
|
# numberOfStocks = int(input("How many stocks or mutual funds would you like to analyze? ")) # CHANGE BACK LATER
|
|
numberOfStocks = 1
|
|
for i in range(0, numberOfStocks, 1):
|
|
print("Stock", i+1, ": ", end='')
|
|
stockName = str(input())
|
|
listOfStocksData.append(i)
|
|
listOfStocksData[i] = StockData()
|
|
listOfStocksData[i].setName(stockName)
|
|
# print(listOfStocksData[i].name)
|
|
|
|
# listOfStocksReturn.append(i)
|
|
# listOfStocksReturn[i] = StockReturn()
|
|
|
|
|
|
# Decide on a benchmark
|
|
benchmarkTicker = ''
|
|
while benchmarkTicker == '':
|
|
listOfBenchmarks = ['S&P500', 'DJIA', 'Russell 3000', 'MSCI EAFE']
|
|
listOfBenchmarksTicker = ['SPY', 'DJIA', 'VTHR', 'EFT']
|
|
print('\nList of benchmarks:', listOfBenchmarks)
|
|
# benchmark = str(input('Benchmark to compare to: '))
|
|
benchmark = 'S&P500'
|
|
|
|
for i in range(0,len(listOfBenchmarks), 1):
|
|
if benchmark == listOfBenchmarks[i]:
|
|
benchmarkTicker = listOfBenchmarksTicker[i]
|
|
i = len(listOfBenchmarks)
|
|
|
|
if benchmarkTicker == '':
|
|
print('Benchmark not found. Please type in a benchmark from the list')
|
|
|
|
print('\n', benchmark, ' (', benchmarkTicker, ')', sep='')
|
|
|
|
benchmarkName = str(benchmark)
|
|
benchmark = StockData()
|
|
benchmark.setName(benchmarkName)
|
|
StockData.main(benchmark)
|
|
|
|
benchmarkReturn = Return()
|
|
Return.mainBenchmark(benchmarkReturn, benchmark)
|
|
|
|
timeFrame = Return.returnTimeFrame(benchmarkReturn)
|
|
print('Time Frame [years, months]:', timeFrame)
|
|
|
|
sumOfListLengths = 0
|
|
for i in range(0, numberOfStocks, 1):
|
|
print('\n', listOfStocksData[i].name, sep='')
|
|
StockData.main(listOfStocksData[i])
|
|
# Count how many stocks are available
|
|
sumOfListLengths = sumOfListLengths + len(StockData.returnAllLists(listOfStocksData[i]))
|
|
|
|
if sumOfListLengths == 0:
|
|
print("No sources have data for given stocks")
|
|
exit()
|
|
|
|
# Find return over time using either Jensen's Alpha, Sharpe Ratio, Sortino Ratio, or Treynor Ratio
|
|
for i in range(0, numberOfStocks, 1):
|
|
print('\n', listOfStocksData[i].name, sep='')
|
|
# StockReturn.main(listOfStocksReturn[i])
|
|
|
|
|
|
# Runs correlation or regression study
|
|
# print(listOfStocksData[0].name, listOfStocksData[0].absFirstLastDates, listOfStocksData[0].finalDatesAndClose)
|
|
indicatorFound = False
|
|
while indicatorFound == False:
|
|
print("1. Expense Ratio\n2. Asset Size\n3. Turnover\n4. Persistence\nWhich indicator would you like to look at? ", end='')
|
|
|
|
# indicator = str(input()) # CHANGE BACK TO THIS LATER
|
|
indicator = 'Expense Ratio'
|
|
print(indicator, end='')
|
|
|
|
indicatorFound = True
|
|
print('\n', end='')
|
|
|
|
if indicator == 'Expense Ratio' or indicator == '1' or indicator == 'expense ratio':
|
|
# from ExpenseRatio import ExpenseRatio
|
|
print('\nExpense Ratio')
|
|
|
|
elif indicator == 'Asset Size' or indicator == '2' or indicator == 'asset size':
|
|
print('\nAsset Size')
|
|
|
|
elif indicator == 'Turnover' or indicator == '3' or indicator == 'turnover':
|
|
print('\nTurnover')
|
|
|
|
elif indicator == 'Persistence' or indicator == '4' or indicator == 'persistence':
|
|
print('\nPersistence')
|
|
|
|
else:
|
|
indicatorFound = False
|
|
print('Invalid input, please enter indicator again')
|
|
|
|
stockName = 'IWV'
|
|
stock1 = Stock(stockName)
|
|
print("Finding available dates and close values for", stock1.name)
|
|
StockData.main(stock1)
|
|
'''
|