2019-04-21 22:16:55 -07:00
'''
__ _ _ _ _ _
/ _ | | | ( _ ) | ( _ ) | |
| | _ _ _ _ __ __ | | ______ _ _ __ __ | | _ ___ __ _ | | _ ___ _ __ ___
| _ | | | | ' _ \ / _` | |______| | | ' _ \ / _ ` | | / __ / _ ` | __ / _ \| ' __/ __|
| | | | _ | | | | | ( _ | | | | | | | ( _ | | | ( _ | ( _ | | | | ( _ ) | | \__ \
| _ | \__ , _ | _ | | _ | \__ , _ | | _ | _ | | _ | \__ , _ | _ | \___ \__ , _ | \__ \___ / | _ | | ___ /
Project homepage : https : / / github . com / andrewkdinh / fund - indicators
Author : Andrew Dinh < fund - indicators @andrewkdinh.com >
Copyright ( C ) 2019 Andrew Dinh
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < https : / / www . gnu . org / licenses / > .
'''
2019-01-31 13:22:02 -08:00
2019-03-18 10:26:07 -07:00
# PYTHON FILES
2019-01-31 13:22:02 -08:00
import Functions
2019-03-18 10:26:07 -07:00
from yahoofinancials import YahooFinancials
from termcolor import cprint
# REQUIRED
import requests_cache
2019-03-01 11:06:09 -08:00
import os . path
2019-03-18 10:26:07 -07:00
import re
import datetime
import json
import requests
from bs4 import BeautifulSoup
import numpy as np
2019-02-14 12:17:22 -08:00
2019-03-18 10:26:07 -07:00
# OPTIONAL
2019-04-15 23:08:01 -07:00
try :
import matplotlib . pyplot as plt
except :
pass
2019-03-18 10:26:07 -07:00
from halo import Halo
2019-02-14 12:17:22 -08:00
2019-03-18 10:26:07 -07:00
# FOR ASYNC
2019-03-01 11:06:09 -08:00
from concurrent . futures import ThreadPoolExecutor as PoolExecutor
import time
import random
2019-03-18 10:26:07 -07:00
import sys
sys . path . insert ( 0 , ' ./modules ' )
2019-02-14 12:17:22 -08:00
requests_cache . install_cache (
2019-03-01 11:06:09 -08:00
' cache ' , backend = ' sqlite ' , expire_after = 43200 ) # 12 hours
2019-02-21 11:43:46 -08:00
2019-01-31 13:22:02 -08:00
# API Keys
apiAV = ' O42ICUV58EIZZQMU '
# apiBarchart = 'a17fab99a1c21cd6f847e2f82b592838'
apiBarchart = ' f40b136c6dc4451f9136bb53b9e70ffa '
apiTiingo = ' 2e72b53f2ab4f5f4724c5c1e4d5d4ac0af3f7ca8 '
apiTradier = ' n26IFFpkOFRVsB5SNTVNXicE5MPD '
2019-02-14 12:17:22 -08:00
apiQuandl = ' KUh3U3hxke9tCimjhWEF '
# apiIntrinio = 'OmNmN2E5YWI1YzYxN2Q4NzEzZDhhOTgwN2E2NWRhOWNl'
2019-04-08 07:19:39 -07:00
# If you're going to take these API keys and abuse it, you should really
# reconsider your life priorities
2019-01-31 13:22:02 -08:00
2018-12-16 17:58:25 -08:00
'''
2019-01-31 13:22:02 -08:00
API Keys :
Alpha Vantage API Key : O42ICUV58EIZZQMU
2019-02-14 12:17:22 -08:00
Barchart API Key : a17fab99a1c21cd6f847e2f82b592838
2019-01-31 13:22:02 -08:00
Possible other one ? f40b136c6dc4451f9136bb53b9e70ffa
150 getHistory queries per day
Tiingo API Key : 2e72 b53f2ab4f5f4724c5c1e4d5d4ac0af3f7ca8
Tradier API Key : n26IFFpkOFRVsB5SNTVNXicE5MPD
Monthly Bandwidth = 5 GB
Hourly Requests = 500
Daily Requests = 20 , 000
Symbol Requests = 500
2019-02-14 12:17:22 -08:00
Quandl API Key : KUh3U3hxke9tCimjhWEF
Intrinio API Key : OmNmN2E5YWI1YzYxN2Q4NzEzZDhhOTgwN2E2NWRhOWNl
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
Mutual funds ?
2019-01-31 13:22:02 -08:00
Yes : Alpha Vantage , Tiingo
No : IEX , Barchart
2019-02-14 12:17:22 -08:00
Adjusted ?
Yes : Alpha Vantage , IEX
No : Tiingo
2018-12-16 17:58:25 -08:00
'''
2018-12-16 14:46:56 -08:00
2018-12-31 16:37:51 -08:00
2019-01-31 13:22:02 -08:00
class Stock :
2018-12-31 16:37:51 -08:00
2019-01-31 13:22:02 -08:00
# GLOBAL VARIABLES
2019-03-01 11:06:09 -08:00
timeFrame = 0 # Months
2019-02-14 12:17:22 -08:00
riskFreeRate = 0
indicator = ' '
2018-12-31 16:37:51 -08:00
2019-03-18 10:26:07 -07:00
# CONFIG
removeOutliers = True
2019-04-08 07:19:39 -07:00
sourceList = [ ' Yahoo ' , ' Alpha Vantage ' , ' IEX ' , ' Tiingo ' ]
2019-04-15 23:08:01 -07:00
plotIndicatorRegression = False
2019-04-21 15:59:16 -07:00
timePlotIndicatorRegression = 5 # seconds
2019-03-18 10:26:07 -07:00
config = ' N/A '
2019-01-30 08:18:34 -08:00
2019-02-14 12:17:22 -08:00
# BENCHMARK VALUES
2019-01-31 13:22:02 -08:00
benchmarkDates = [ ]
benchmarkCloseValues = [ ]
2019-03-01 11:06:09 -08:00
benchmarkAverageMonthlyReturn = 0
2019-02-14 12:17:22 -08:00
benchmarkStandardDeviation = 0
2018-12-31 16:37:51 -08:00
2019-02-14 12:17:22 -08:00
# INDICATOR VALUES
indicatorCorrelation = [ ]
indicatorRegression = [ ]
2019-03-01 11:06:09 -08:00
persTimeFrame = 0
2018-12-31 16:37:51 -08:00
2019-01-31 13:22:02 -08:00
def __init__ ( self ) :
# BASIC DATA
self . name = ' ' # Ticker symbol
self . allDates = [ ]
self . allCloseValues = [ ]
self . dates = [ ]
self . closeValues = [ ]
self . datesMatchBenchmark = [ ]
self . closeValuesMatchBenchmark = [ ]
2018-12-31 16:37:51 -08:00
2019-01-31 13:22:02 -08:00
# CALCULATED RETURN
2019-03-01 11:06:09 -08:00
self . averageMonthlyReturn = 0
self . monthlyReturn = [ ]
2019-01-31 13:22:02 -08:00
self . sharpe = 0
2019-02-14 12:17:22 -08:00
self . sortino = 0
2019-01-31 13:22:02 -08:00
self . treynor = 0
self . alpha = 0
self . beta = 0
self . standardDeviation = 0
2019-02-14 12:17:22 -08:00
self . downsideDeviation = 0
self . kurtosis = 0
self . skewness = 0 # Not sure if I need this
2019-03-18 10:26:07 -07:00
self . correlation = 0
2019-02-14 12:17:22 -08:00
self . linearRegression = [ ] # for y=mx+b, this list has [m,b]
2019-01-16 08:54:06 -08:00
2019-02-14 12:17:22 -08:00
self . indicatorValue = ' '
2019-01-16 08:54:06 -08:00
2019-01-31 13:22:02 -08:00
def setName ( self , newName ) :
self . name = newName
2018-12-23 09:24:18 -08:00
2019-01-31 13:22:02 -08:00
def getName ( self ) :
return self . name
def getAllDates ( self ) :
return self . allDates
def getAllCloseValues ( self ) :
return self . allCloseValues
def IEX ( self ) :
url = ' ' . join (
( ' https://api.iextrading.com/1.0/stock/ ' , self . name , ' /chart/5y ' ) )
2019-02-14 12:17:22 -08:00
# link = "https://api.iextrading.com/1.0/stock/spy/chart/5y"
2019-04-20 10:42:40 -07:00
cprint ( " Fetch: " + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
f = requests . get ( url )
2019-02-14 12:17:22 -08:00
Functions . fromCache ( f )
2019-01-31 13:22:02 -08:00
json_data = f . text
2019-02-21 11:43:46 -08:00
if json_data == ' Unknown symbol ' or f . status_code != 200 :
2019-01-31 13:22:02 -08:00
print ( " IEX not available " )
2019-03-18 10:26:07 -07:00
return ' N/A '
2019-01-31 13:22:02 -08:00
loaded_json = json . loads ( json_data )
listIEX = [ ]
print ( " \n Finding all dates given " )
allDates = [ ]
2019-04-08 07:19:39 -07:00
for i in range ( 0 , len ( loaded_json ) , 1 ) : # For oldest first
2019-01-31 13:22:02 -08:00
# for i in range(len(loaded_json)-1, -1, -1):
line = loaded_json [ i ]
date = line [ ' date ' ]
allDates . append ( date )
listIEX . append ( allDates )
print ( len ( listIEX [ 0 ] ) , " dates " )
2019-03-18 10:26:07 -07:00
# print("\nFinding close values for each date")
2019-01-31 13:22:02 -08:00
values = [ ]
2019-04-08 07:19:39 -07:00
for i in range ( 0 , len ( loaded_json ) , 1 ) : # For oldest first
2019-01-31 13:22:02 -08:00
# for i in range(len(loaded_json)-1, -1, -1):
line = loaded_json [ i ]
value = line [ ' close ' ]
values . append ( value )
listIEX . append ( values )
2019-04-21 15:59:16 -07:00
# print(len(listIEX[0]), 'dates and', len(listIEX[1]), "close values")
2019-01-31 13:22:02 -08:00
return listIEX
def AV ( self ) :
listAV = [ ]
url = ' ' . join ( ( ' https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol= ' ,
self . name , ' &outputsize=full&apikey= ' , apiAV ) )
# https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&outputsize=full&apikey=demo
2019-04-20 10:42:40 -07:00
cprint ( " Fetch: " + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
f = requests . get ( url )
2019-02-14 12:17:22 -08:00
Functions . fromCache ( f )
2019-01-31 13:22:02 -08:00
json_data = f . text
loaded_json = json . loads ( json_data )
2019-03-01 11:06:09 -08:00
if len ( loaded_json ) == 1 or f . status_code != 200 or len ( loaded_json ) == 0 :
2019-01-31 13:22:02 -08:00
print ( " Alpha Vantage not available " )
2019-03-18 10:26:07 -07:00
return ' N/A '
2019-01-31 13:22:02 -08:00
dailyTimeSeries = loaded_json [ ' Time Series (Daily) ' ]
listOfDates = list ( dailyTimeSeries )
# listAV.append(listOfDates)
listAV . append ( list ( reversed ( listOfDates ) ) )
2019-03-18 10:26:07 -07:00
# print("\nFinding close values for each date")
2019-01-31 13:22:02 -08:00
values = [ ]
for i in range ( 0 , len ( listOfDates ) , 1 ) :
temp = listOfDates [ i ]
loaded_json2 = dailyTimeSeries [ temp ]
2019-02-14 12:17:22 -08:00
# value = loaded_json2['4. close']
2019-01-31 13:22:02 -08:00
value = loaded_json2 [ ' 5. adjusted close ' ]
2019-02-14 12:17:22 -08:00
values . append ( float ( value ) )
2019-01-31 13:22:02 -08:00
# listAV.append(values)
listAV . append ( list ( reversed ( values ) ) )
2019-04-21 15:59:16 -07:00
# print(len(listAV[0]), 'dates and', len(listAV[1]), "close values")
2019-01-31 13:22:02 -08:00
return listAV
def Tiingo ( self ) :
token = ' ' . join ( ( ' Token ' , apiTiingo ) )
headers = {
' Content-Type ' : ' application/json ' ,
' Authorization ' : token
}
url = ' ' . join ( ( ' https://api.tiingo.com/tiingo/daily/ ' , self . name ) )
2019-04-20 10:42:40 -07:00
cprint ( " Fetch: " + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
f = requests . get ( url , headers = headers )
2019-02-14 12:17:22 -08:00
Functions . fromCache ( f )
2019-01-31 13:22:02 -08:00
loaded_json = f . json ( )
2019-04-08 07:19:39 -07:00
if len ( loaded_json ) == 1 or f . status_code != 200 or loaded_json [ ' startDate ' ] is None :
2019-01-31 13:22:02 -08:00
print ( " Tiingo not available " )
2019-03-18 10:26:07 -07:00
return ' N/A '
2019-01-31 13:22:02 -08:00
listTiingo = [ ]
print ( " \n Finding first and last date " )
firstDate = loaded_json [ ' startDate ' ]
lastDate = loaded_json [ ' endDate ' ]
print ( firstDate , ' ... ' , lastDate )
print ( " \n Finding all dates given " , end = ' ' )
dates = [ ]
values = [ ]
url2 = ' ' . join ( ( url , ' /prices?startDate= ' ,
firstDate , ' &endDate= ' , lastDate ) )
# https://api.tiingo.com/tiingo/daily/<ticker>/prices?startDate=2012-1-1&endDate=2016-1-1
2019-04-20 10:42:40 -07:00
cprint ( " \n Fetch: " + url2 + ' \n ' , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
requestResponse2 = requests . get ( url2 , headers = headers )
2019-02-14 12:17:22 -08:00
Functions . fromCache ( requestResponse2 )
2019-01-31 13:22:02 -08:00
loaded_json2 = requestResponse2 . json ( )
for i in range ( 0 , len ( loaded_json2 ) - 1 , 1 ) :
line = loaded_json2 [ i ]
dateWithTime = line [ ' date ' ]
temp = dateWithTime . split ( ' T00:00:00.000Z ' )
date = temp [ 0 ]
dates . append ( date )
value = line [ ' close ' ]
values . append ( value )
listTiingo . append ( dates )
print ( len ( listTiingo [ 0 ] ) , " dates " )
2019-03-18 10:26:07 -07:00
# print("Finding close values for each date")
2019-01-31 13:22:02 -08:00
# Used loop from finding dates
listTiingo . append ( values )
2019-04-21 15:59:16 -07:00
# print(len(listTiingo[0]), 'dates and', len(listTiingo[1]), "close values")
2019-01-31 13:22:02 -08:00
return listTiingo
2019-03-18 10:26:07 -07:00
def Yahoo ( self ) :
url = ' ' . join ( ( ' https://finance.yahoo.com/quote/ ' ,
self . name , ' ?p= ' , self . name ) )
2019-04-20 10:42:40 -07:00
cprint ( ' Fetch: ' + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
t = requests . get ( url )
2019-04-19 09:40:30 -07:00
Functions . fromCache ( t )
2019-03-18 10:26:07 -07:00
if t . history :
print ( ' Yahoo Finance does not have data for ' , self . name )
print ( ' Yahoo not available ' )
return ' N/A '
else :
print ( ' Yahoo Finance has data for ' , self . name )
ticker = self . name
firstDate = datetime . datetime . now ( ) . date (
) - datetime . timedelta ( days = self . timeFrame * 31 ) # 31 days as a buffer just in case
with Halo ( spinner = ' dots ' ) :
yahoo_financials = YahooFinancials ( ticker )
r = yahoo_financials . get_historical_price_data (
str ( firstDate ) , str ( datetime . date . today ( ) ) , ' daily ' )
s = r [ self . name ] [ ' prices ' ]
listOfDates = [ ]
listOfCloseValues = [ ]
for i in range ( 0 , len ( s ) , 1 ) :
listOfDates . append ( s [ i ] [ ' formatted_date ' ] )
listOfCloseValues . append ( s [ i ] [ ' close ' ] )
listYahoo = [ listOfDates , listOfCloseValues ]
# Sometimes close value is a None value
i = 0
while i < len ( listYahoo [ 1 ] ) :
2019-04-08 07:19:39 -07:00
if Functions . listIndexExists ( listYahoo [ 1 ] [ i ] ) is True :
if listYahoo [ 1 ] [ i ] is None :
2019-03-18 10:26:07 -07:00
del listYahoo [ 1 ] [ i ]
del listYahoo [ 0 ] [ i ]
i = i - 1
i = i + 1
else :
break
2019-04-21 15:59:16 -07:00
# print(len(listYahoo[0]), 'dates and', len(listYahoo[1]), "close values")
2019-03-18 10:26:07 -07:00
return listYahoo
2019-01-31 13:22:02 -08:00
def datesAndClose ( self ) :
2019-03-18 10:26:07 -07:00
cprint ( ' \n ' + str ( self . name ) , ' cyan ' )
2019-01-31 13:22:02 -08:00
2019-03-18 10:26:07 -07:00
sourceList = Stock . sourceList
2019-01-31 13:22:02 -08:00
# Use each source until you get a value
for j in range ( 0 , len ( sourceList ) , 1 ) :
source = sourceList [ j ]
2019-03-18 10:26:07 -07:00
print ( ' Source being used: ' , source )
2019-01-31 13:22:02 -08:00
2019-03-18 10:26:07 -07:00
if source == ' Alpha Vantage ' :
2019-01-31 13:22:02 -08:00
datesAndCloseList = Stock . AV ( self )
2019-03-18 10:26:07 -07:00
elif source == ' Yahoo ' :
datesAndCloseList = Stock . Yahoo ( self )
2019-01-31 13:22:02 -08:00
elif source == ' IEX ' :
datesAndCloseList = Stock . IEX ( self )
2019-03-18 10:26:07 -07:00
elif source == ' Tiingo ' :
datesAndCloseList = Stock . Tiingo ( self )
2019-01-31 13:22:02 -08:00
2019-03-18 10:26:07 -07:00
if datesAndCloseList != ' N/A ' :
2019-01-31 13:22:02 -08:00
break
else :
if j == len ( sourceList ) - 1 :
print ( ' \n No sources have data for ' , self . name )
2019-04-19 09:40:30 -07:00
cprint ( ' Removing ' + self . name +
2019-04-20 10:42:40 -07:00
' because no data was found ' , ' yellow ' )
2019-03-18 10:26:07 -07:00
return ' N/A '
print ( ' ' )
2019-01-31 13:22:02 -08:00
# Convert dates to datetime
allDates = datesAndCloseList [ 0 ]
for j in range ( 0 , len ( allDates ) , 1 ) :
allDates [ j ] = Functions . stringToDate ( allDates [ j ] )
datesAndCloseList [ 0 ] = allDates
2019-03-01 11:06:09 -08:00
# Determine if close value list has value of zero
# AKA https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=RGN&outputsize=full&apikey=O42ICUV58EIZZQMU
for i in datesAndCloseList [ 1 ] :
if i == 0 :
print ( ' Found close value of 0. This is likely something like ticker RGN (Daily Time Series with Splits and Dividend Events) ' )
2019-04-19 09:40:30 -07:00
cprint ( ' Removing ' + self . name +
2019-04-20 10:42:40 -07:00
' from list of stocks to ensure compability later ' , ' yellow ' )
2019-03-18 10:26:07 -07:00
return ' N/A '
2019-03-01 11:06:09 -08:00
2019-01-31 13:22:02 -08:00
return datesAndCloseList
2019-02-14 12:17:22 -08:00
def datesAndCloseFitTimeFrame ( self ) :
2019-04-21 15:59:16 -07:00
# print('\nShortening list to fit time frame')
2019-01-31 13:22:02 -08:00
# Have to do this because if I just make dates = self.allDates & closeValues = self.allCloseValues, then deleting from dates & closeValues also deletes it from self.allDates & self.allCloseValues (I'm not sure why)
dates = [ ]
closeValues = [ ]
for i in range ( 0 , len ( self . allDates ) , 1 ) :
dates . append ( self . allDates [ i ] )
closeValues . append ( self . allCloseValues [ i ] )
firstDate = datetime . datetime . now ( ) . date ( ) - datetime . timedelta (
2019-03-01 11:06:09 -08:00
days = self . timeFrame * 30 )
2019-04-19 09:40:30 -07:00
# print(self.timeFrame, ' months ago: ', firstDate, sep='')
2019-01-31 13:22:02 -08:00
closestDate = Functions . getNearest ( dates , firstDate )
if closestDate != firstDate :
2019-04-21 15:59:16 -07:00
# print('Closest date available to ' + str(self.timeFrame) + ' months ago: ' + str(closestDate))
2019-01-31 13:22:02 -08:00
firstDate = closestDate
else :
print ( self . name , ' has a close value for ' , firstDate )
# Remove dates in list up to firstDate
while dates [ 0 ] != firstDate :
dates . remove ( dates [ 0 ] )
# Remove close values until list is same length as dates
while len ( closeValues ) != len ( dates ) :
closeValues . remove ( closeValues [ 0 ] )
datesAndCloseList2 = [ ]
datesAndCloseList2 . append ( dates )
datesAndCloseList2 . append ( closeValues )
2019-03-18 10:26:07 -07:00
print ( len ( dates ) , ' dates and ' , len ( closeValues ) , ' close values ' )
2019-01-31 13:22:02 -08:00
return datesAndCloseList2
2019-04-08 07:19:39 -07:00
def calcAverageMonthlyReturn ( self ) :
2019-03-01 11:06:09 -08:00
# averageMonthlyReturn = (float(self.closeValues[len(self.closeValues)-1]/self.closeValues[0])**(1/(self.timeFrame)))-1
# averageMonthlyReturn = averageMonthlyReturn * 100
averageMonthlyReturn = sum ( self . monthlyReturn ) / self . timeFrame
print ( ' Average monthly return: ' , averageMonthlyReturn )
return averageMonthlyReturn
2019-02-14 12:17:22 -08:00
2019-03-01 11:06:09 -08:00
def calcMonthlyReturn ( self ) :
monthlyReturn = [ ]
2019-02-14 12:17:22 -08:00
2019-03-01 11:06:09 -08:00
# Calculate monthly return in order from oldest to newest
monthlyReturn = [ ]
2019-02-14 12:17:22 -08:00
for i in range ( 0 , self . timeFrame , 1 ) :
firstDate = datetime . datetime . now ( ) . date ( ) - datetime . timedelta (
2019-03-01 11:06:09 -08:00
days = ( self . timeFrame - i ) * 30 )
2019-02-14 12:17:22 -08:00
secondDate = datetime . datetime . now ( ) . date ( ) - datetime . timedelta (
2019-03-01 11:06:09 -08:00
days = ( self . timeFrame - i - 1 ) * 30 )
2019-02-14 12:17:22 -08:00
# Find closest dates to firstDate and lastDate
firstDate = Functions . getNearest ( self . dates , firstDate )
secondDate = Functions . getNearest ( self . dates , secondDate )
if firstDate == secondDate :
2019-04-20 10:42:40 -07:00
print ( ' Closest date is ' + str ( firstDate ) +
2019-04-19 09:40:30 -07:00
' , which is after the given time frame ' )
2019-03-18 10:26:07 -07:00
return ' N/A '
2019-02-14 12:17:22 -08:00
2019-03-01 11:06:09 -08:00
# Get corresponding close values and calculate monthly return
2019-02-14 12:17:22 -08:00
for i in range ( 0 , len ( self . dates ) , 1 ) :
if self . dates [ i ] == firstDate :
firstClose = self . closeValues [ i ]
elif self . dates [ i ] == secondDate :
secondClose = self . closeValues [ i ]
break
2019-03-01 11:06:09 -08:00
monthlyReturnTemp = ( secondClose / firstClose ) - 1
monthlyReturnTemp = monthlyReturnTemp * 100
monthlyReturn . append ( monthlyReturnTemp )
2019-02-14 12:17:22 -08:00
2019-03-01 11:06:09 -08:00
# print('Monthly return over the past', self.timeFrame, 'months:', monthlyReturn)
return monthlyReturn
2019-02-14 12:17:22 -08:00
def calcCorrelation ( self , closeList ) :
correlation = np . corrcoef (
self . closeValuesMatchBenchmark , closeList ) [ 0 , 1 ]
print ( ' Correlation with benchmark: ' , correlation )
return correlation
def calcStandardDeviation ( self ) :
numberOfValues = self . timeFrame
2019-03-01 11:06:09 -08:00
mean = self . averageMonthlyReturn
2019-02-14 12:17:22 -08:00
standardDeviation = (
2019-03-01 11:06:09 -08:00
( sum ( ( self . monthlyReturn [ x ] - mean ) * * 2 for x in range ( 0 , numberOfValues , 1 ) ) ) / ( numberOfValues - 1 ) ) * * ( 1 / 2 )
2019-02-14 12:17:22 -08:00
print ( ' Standard Deviation: ' , standardDeviation )
return standardDeviation
def calcDownsideDeviation ( self ) :
numberOfValues = self . timeFrame
2019-03-01 11:06:09 -08:00
targetReturn = self . averageMonthlyReturn
2019-02-14 12:17:22 -08:00
downsideDeviation = (
2019-03-01 11:06:09 -08:00
( sum ( min ( 0 , ( self . monthlyReturn [ x ] - targetReturn ) ) * * 2 for x in range ( 0 , numberOfValues , 1 ) ) ) / ( numberOfValues - 1 ) ) * * ( 1 / 2 )
2019-02-14 12:17:22 -08:00
print ( ' Downside Deviation: ' , downsideDeviation )
return downsideDeviation
def calcKurtosis ( self ) :
numberOfValues = self . timeFrame
2019-03-01 11:06:09 -08:00
mean = self . averageMonthlyReturn
kurtosis = ( sum ( ( self . monthlyReturn [ x ] - mean ) * * 4 for x in range (
2019-02-14 12:17:22 -08:00
0 , numberOfValues , 1 ) ) ) / ( ( numberOfValues - 1 ) * ( self . standardDeviation * * 4 ) )
print ( ' Kurtosis: ' , kurtosis )
return kurtosis
def calcSkewness ( self ) :
numberOfValues = self . timeFrame
2019-03-01 11:06:09 -08:00
mean = self . averageMonthlyReturn
skewness = ( sum ( ( self . monthlyReturn [ x ] - mean ) * * 3 for x in range (
2019-02-14 12:17:22 -08:00
0 , numberOfValues , 1 ) ) ) / ( ( numberOfValues - 1 ) * ( self . standardDeviation * * 3 ) )
print ( ' Skewness: ' , skewness )
return skewness
def calcBeta ( self ) :
beta = self . correlation * \
( self . standardDeviation / Stock . benchmarkStandardDeviation )
2019-01-31 13:22:02 -08:00
print ( ' Beta: ' , beta )
return beta
2019-02-14 12:17:22 -08:00
def calcAlpha ( self ) :
2019-03-01 11:06:09 -08:00
alpha = self . averageMonthlyReturn - \
( Stock . riskFreeRate + ( ( Stock . benchmarkAverageMonthlyReturn -
2019-02-14 12:17:22 -08:00
Stock . riskFreeRate ) * self . beta ) )
print ( ' Alpha: ' , alpha )
return alpha
def calcSharpe ( self ) :
2019-03-01 11:06:09 -08:00
sharpe = ( self . averageMonthlyReturn - Stock . riskFreeRate ) / \
2019-02-14 12:17:22 -08:00
self . standardDeviation
print ( ' Sharpe Ratio: ' , sharpe )
return sharpe
def calcSortino ( self ) :
2019-03-01 11:06:09 -08:00
sortino = ( self . averageMonthlyReturn - self . riskFreeRate ) / \
2019-02-14 12:17:22 -08:00
self . downsideDeviation
print ( ' Sortino Ratio: ' , sortino )
return sortino
def calcTreynor ( self ) :
2019-03-01 11:06:09 -08:00
treynor = ( self . averageMonthlyReturn - Stock . riskFreeRate ) / self . beta
2019-02-14 12:17:22 -08:00
print ( ' Treynor Ratio: ' , treynor )
return treynor
def calcLinearRegression ( self ) :
dates = self . dates
y = self . closeValues
# First change dates to integers (days from first date)
x = datesToDays ( dates )
x = np . array ( x )
y = np . array ( y )
# Estimate coefficients
# number of observations/points
n = np . size ( x )
# mean of x and y vector
m_x , m_y = np . mean ( x ) , np . mean ( y )
# calculating cross-deviation and deviation about x
SS_xy = np . sum ( y * x ) - n * m_y * m_x
SS_xx = np . sum ( x * x ) - n * m_x * m_x
# calculating regression coefficients
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1 * m_x
b = [ b_0 , b_1 ]
formula = ' ' . join (
( ' y = ' , str ( round ( float ( b [ 0 ] ) , 2 ) ) , ' x + ' , str ( round ( float ( b [ 1 ] ) , 2 ) ) ) )
print ( ' Linear regression formula: ' , formula )
# Stock.plot_regression_line(self, x, y, b)
regression = [ ]
regression . append ( b [ 0 ] )
regression . append ( b [ 1 ] )
return regression
def plot_regression_line ( self , x , y , b ) :
# plotting the actual points as scatter plot
plt . scatter ( self . dates , y , color = " m " ,
marker = " o " , s = 30 )
# predicted response vector
y_pred = b [ 0 ] + b [ 1 ] * x
# plotting the regression line
plt . plot ( self . dates , y_pred , color = " g " )
# putting labels
plt . title ( self . name )
plt . xlabel ( ' Dates ' )
plt . ylabel ( ' Close Values ' )
# function to show plot
2019-04-21 22:16:55 -07:00
try :
t = Stock . timePlotIndicatorRegression
plt . show ( block = False )
for i in range ( t , 0 , - 1 ) :
if i == 1 :
sys . stdout . write ( ' Keeping plot open for ' +
str ( i ) + ' second \r ' )
else :
sys . stdout . write ( ' Keeping plot open for ' +
str ( i ) + ' seconds \r ' )
plt . pause ( 1 )
sys . stdout . flush ( )
sys . stdout . write ( ' \r ' )
sys . stdout . flush ( )
plt . close ( )
except :
sys . stdout . write ( ' \r ' )
2019-02-14 12:17:22 -08:00
sys . stdout . flush ( )
2019-03-01 11:06:09 -08:00
def scrapeYahooFinance ( self ) :
# Determine if ETF, Mutual fund, or stock
url = ' ' . join ( ( ' https://finance.yahoo.com/quote/ ' ,
self . name , ' ?p= ' , self . name ) )
2019-04-20 10:42:40 -07:00
cprint ( ' Fetch: ' + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
t = requests . get ( url )
Functions . fromCache ( t )
if t . history :
print ( ' Yahoo Finance does not have data for ' , self . name )
return ' N/A '
2019-03-01 11:06:09 -08:00
else :
2019-03-18 10:26:07 -07:00
print ( ' Yahoo Finance has data for ' , self . name )
2019-03-01 11:06:09 -08:00
stockType = ' '
url2 = ' ' . join ( ( ' https://finance.yahoo.com/lookup?s= ' , self . name ) )
2019-04-20 10:42:40 -07:00
cprint ( ' Fetch: ' + url2 , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
x = requests . get ( url2 )
raw_html = x . text
Functions . fromCache ( x )
2019-03-01 11:06:09 -08:00
soup2 = BeautifulSoup ( raw_html , ' html.parser ' )
# Type (Stock, ETF, Mutual Fund)
r = soup2 . find_all (
' td ' , attrs = { ' class ' : ' data-col4 Ta(start) Pstart(20px) Miw(30px) ' } )
2019-03-18 10:26:07 -07:00
u = soup2 . find_all ( ' a ' , attrs = { ' class ' : ' Fw(b) ' } ) # Name and class
2019-03-01 11:06:09 -08:00
z = soup2 . find_all ( ' td ' , attrs = {
' class ' : ' data-col1 Ta(start) Pstart(10px) Miw(80px) ' } ) # Name of stock
listNames = [ ]
2019-03-18 10:26:07 -07:00
for i in u :
if i . text . strip ( ) == i . text . strip ( ) . upper ( ) :
listNames . append ( i . text . strip ( ) )
'''
2019-03-01 11:06:09 -08:00
if len ( i . text . strip ( ) ) < 6 :
listNames . append ( i . text . strip ( ) )
2019-03-18 10:26:07 -07:00
elif ' . ' in i . text . strip ( ) :
listNames . append ( i . text . strip ( ) ) # Example: TSNAX (TSN.AX)
#! If having problems later, separate them by Industries (Mutual funds and ETF's are always N/A)
'''
2019-03-01 11:06:09 -08:00
for i in range ( 0 , len ( listNames ) , 1 ) :
if listNames [ i ] == self . name :
break
2019-03-18 10:26:07 -07:00
2019-03-01 11:06:09 -08:00
r = r [ i ] . text . strip ( )
z = z [ i ] . text . strip ( )
print ( ' Name: ' , z )
if r == ' ETF ' :
stockType = ' ETF '
elif r == ' Stocks ' :
stockType = ' Stock '
elif r == ' Mutual Fund ' :
2019-03-18 10:26:07 -07:00
stockType = ' Mutual Fund '
2019-03-01 11:06:09 -08:00
else :
print ( ' Could not determine fund type ' )
2019-03-18 10:26:07 -07:00
return ' N/A '
2019-03-01 11:06:09 -08:00
print ( ' Type: ' , stockType )
if Stock . indicator == ' Expense Ratio ' :
if stockType == ' Stock ' :
print (
self . name , ' is a stock, and therefore does not have an expense ratio ' )
2019-03-18 10:26:07 -07:00
return ' Stock '
2019-03-01 11:06:09 -08:00
2019-03-18 10:26:07 -07:00
raw_html = t . text
2019-03-01 11:06:09 -08:00
soup = BeautifulSoup ( raw_html , ' html.parser ' )
r = soup . find_all ( ' span ' , attrs = { ' class ' : ' Trsdu(0.3s) ' } )
if r == [ ] :
print ( ' Something went wrong with scraping expense ratio ' )
2019-03-18 10:26:07 -07:00
return ( ' N/A ' )
2019-03-01 11:06:09 -08:00
if stockType == ' ETF ' :
for i in range ( len ( r ) - 1 , 0 , - 1 ) :
s = r [ i ] . text . strip ( )
if s [ - 1 ] == ' % ' :
break
2019-03-18 10:26:07 -07:00
elif stockType == ' Mutual Fund ' :
2019-03-01 11:06:09 -08:00
count = 0 # Second in set
for i in range ( 0 , len ( r ) - 1 , 1 ) :
s = r [ i ] . text . strip ( )
if s [ - 1 ] == ' % ' and count == 0 :
count + = 1
elif s [ - 1 ] == ' % ' and count == 1 :
break
if s [ - 1 ] == ' % ' :
expenseRatio = float ( s . replace ( ' % ' , ' ' ) )
else :
print ( ' Something went wrong with scraping expense ratio ' )
2019-03-18 10:26:07 -07:00
return ' N/A '
print ( Stock . indicator + ' : ' , end = ' ' )
2019-03-01 11:06:09 -08:00
print ( str ( expenseRatio ) + ' % ' )
return expenseRatio
elif Stock . indicator == ' Market Capitalization ' :
2019-03-18 10:26:07 -07:00
somethingWrong = False
raw_html = t . text
2019-03-01 11:06:09 -08:00
soup = BeautifulSoup ( raw_html , ' html.parser ' )
r = soup . find_all (
' span ' , attrs = { ' class ' : ' Trsdu(0.3s) ' } )
if r == [ ] :
2019-03-18 10:26:07 -07:00
somethingWrong = True
else :
marketCap = 0
for t in r :
s = t . text . strip ( )
if s [ - 1 ] == ' B ' :
print ( Stock . indicator + ' : ' , end = ' ' )
print ( s , end = ' ' )
s = s . replace ( ' B ' , ' ' )
marketCap = float ( s ) * 1000000000 # 1 billion
break
elif s [ - 1 ] == ' M ' :
print ( Stock . indicator + ' : ' , end = ' ' )
print ( s , end = ' ' )
s = s . replace ( ' M ' , ' ' )
marketCap = float ( s ) * 1000000 # 1 million
break
elif s [ - 1 ] == ' K ' :
print ( Stock . indicator + ' : ' , end = ' ' )
print ( s , end = ' ' )
s = s . replace ( ' K ' , ' ' )
marketCap = float ( s ) * 1000 # 1 thousand
break
if marketCap == 0 :
somethingWrong = True
2019-04-08 07:19:39 -07:00
if somethingWrong is True :
2019-03-18 10:26:07 -07:00
ticker = self . name
yahoo_financials = YahooFinancials ( ticker )
marketCap = yahoo_financials . get_market_cap ( )
2019-04-08 07:19:39 -07:00
if marketCap is not None :
2019-03-18 10:26:07 -07:00
print ( ' (Taken from yahoofinancials) ' )
print ( marketCap )
return int ( marketCap )
else :
print (
' Was not able to scrape or get market capitalization from yahoo finance ' )
return ' N/A '
marketCap = int ( marketCap )
return marketCap
2019-03-01 11:06:09 -08:00
print ( ' = ' , marketCap )
2019-03-18 10:26:07 -07:00
marketCap = marketCap / 1000000
print (
' Dividing marketCap by 1 million (to work with linear regression module): ' , marketCap )
2019-03-01 11:06:09 -08:00
return marketCap
elif Stock . indicator == ' Turnover ' :
if stockType == ' Stock ' :
print ( self . name , ' is a stock, and therefore does not have turnover ' )
2019-03-18 10:26:07 -07:00
return ' Stock '
2019-03-01 11:06:09 -08:00
2019-03-18 10:26:07 -07:00
if stockType == ' Mutual Fund ' :
raw_html = t . text
2019-03-01 11:06:09 -08:00
soup = BeautifulSoup ( raw_html , ' html.parser ' )
r = soup . find_all (
' span ' , attrs = { ' class ' : ' Trsdu(0.3s) ' } )
if r == [ ] :
print ( ' Something went wrong without scraping turnover ' )
2019-03-18 10:26:07 -07:00
return ' N/A '
2019-03-01 11:06:09 -08:00
turnover = 0
for i in range ( len ( r ) - 1 , 0 , - 1 ) :
s = r [ i ] . text . strip ( )
if s [ - 1 ] == ' % ' :
turnover = float ( s . replace ( ' % ' , ' ' ) )
break
if stockType == ' ETF ' :
url = ' ' . join ( ( ' https://finance.yahoo.com/quote/ ' ,
self . name , ' /profile?p= ' , self . name ) )
# https://finance.yahoo.com/quote/SPY/profile?p=SPY
2019-04-20 10:42:40 -07:00
cprint ( ' Fetch: ' + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
2019-04-19 09:40:30 -07:00
t = requests . get ( url )
Functions . fromCache ( t )
raw_html = t . text
2019-03-01 11:06:09 -08:00
soup = BeautifulSoup ( raw_html , ' html.parser ' )
r = soup . find_all (
' span ' , attrs = { ' class ' : ' W(20 % ) D(b) Fl(start) Ta(e) ' } )
if r == [ ] :
print ( ' Something went wrong without scraping turnover ' )
2019-03-18 10:26:07 -07:00
return ' N/A '
2019-03-01 11:06:09 -08:00
turnover = 0
for i in range ( len ( r ) - 1 , 0 , - 1 ) :
s = r [ i ] . text . strip ( )
if s [ - 1 ] == ' % ' :
turnover = float ( s . replace ( ' % ' , ' ' ) )
break
if turnover == 0 :
print ( ' Something went wrong with scraping turnover ' )
2019-03-18 10:26:07 -07:00
return ' N/A '
print ( Stock . indicator + ' : ' , end = ' ' )
2019-03-01 11:06:09 -08:00
print ( str ( turnover ) + ' % ' )
return turnover
def indicatorManual ( self ) :
indicatorValueFound = False
2019-04-08 07:19:39 -07:00
while indicatorValueFound is False :
2019-03-01 11:06:09 -08:00
if Stock . indicator == ' Expense Ratio ' :
indicatorValue = str (
input ( Stock . indicator + ' for ' + self . name + ' ( % ): ' ) )
elif Stock . indicator == ' Persistence ' :
indicatorValue = str (
input ( Stock . indicator + ' for ' + self . name + ' (years): ' ) )
elif Stock . indicator == ' Turnover ' :
indicatorValue = str ( input (
Stock . indicator + ' for ' + self . name + ' in the last ' + str ( Stock . timeFrame ) + ' years: ' ) )
elif Stock . indicator == ' Market Capitalization ' :
indicatorValue = str (
input ( Stock . indicator + ' of ' + self . name + ' : ' ) )
2019-04-08 07:19:39 -07:00
if Functions . strintIsFloat ( indicatorValue ) is True :
2019-03-01 11:06:09 -08:00
indicatorValueFound = True
return float ( indicatorValue )
else :
print ( ' Please enter a number ' )
def calcPersistence ( self ) :
persistenceFirst = ( sum ( self . monthlyReturn [ i ] for i in range (
0 , Stock . persTimeFrame , 1 ) ) ) / Stock . persTimeFrame
persistenceSecond = self . averageMonthlyReturn
persistence = persistenceSecond - persistenceFirst
2019-03-18 10:26:07 -07:00
print ( ' Change (difference) in average monthly return: ' , persistence )
2019-03-01 11:06:09 -08:00
return persistence
2019-02-14 12:17:22 -08:00
def datesToDays ( dates ) :
days = [ ]
firstDate = dates [ 0 ]
days . append ( 0 )
for i in range ( 1 , len ( dates ) , 1 ) :
# Calculate days from first date to current date
daysDiff = ( dates [ i ] - firstDate ) . days
days . append ( daysDiff )
return days
2019-01-31 13:22:02 -08:00
def benchmarkInit ( ) :
# Treat benchmark like stock
benchmarkTicker = ' '
2019-03-01 11:06:09 -08:00
benchmarks = [ ' S&P500 ' , ' DJIA ' , ' Russell 3000 ' , ' MSCI EAFE ' ]
benchmarksTicker = [ ' SPY ' , ' DJIA ' , ' VTHR ' , ' EFT ' ]
print ( ' \n List of benchmarks: ' )
for i in range ( 0 , len ( benchmarks ) , 1 ) :
2019-04-15 23:08:01 -07:00
print ( ' [ ' + str ( i + 1 ) + ' ] ' +
2019-03-01 11:06:09 -08:00
benchmarks [ i ] + ' ( ' + benchmarksTicker [ i ] + ' ) ' )
2019-01-31 13:22:02 -08:00
while benchmarkTicker == ' ' :
2019-02-14 12:17:22 -08:00
benchmark = str ( input ( ' Please choose a benchmark from the list: ' ) )
# benchmark = 'SPY' # TESTING
2019-01-31 13:22:02 -08:00
2019-04-08 07:19:39 -07:00
if Functions . stringIsInt ( benchmark ) is True :
2019-03-01 11:06:09 -08:00
if int ( benchmark ) < = len ( benchmarks ) and int ( benchmark ) > 0 :
2019-02-14 12:17:22 -08:00
benchmarkInt = int ( benchmark )
benchmark = benchmarks [ benchmarkInt - 1 ]
benchmarkTicker = benchmarksTicker [ benchmarkInt - 1 ]
else :
for i in range ( 0 , len ( benchmarks ) , 1 ) :
if benchmark == benchmarks [ i ] :
benchmarkTicker = benchmarksTicker [ i ]
break
if benchmark == benchmarksTicker [ i ] or benchmark == benchmarksTicker [ i ] . lower ( ) :
benchmark = benchmarks [ i ]
benchmarkTicker = benchmarksTicker [ i ]
break
2019-01-31 13:22:02 -08:00
if benchmarkTicker == ' ' :
2019-04-19 09:40:30 -07:00
print ( ' Benchmark not found ' )
2019-01-31 13:22:02 -08:00
print ( benchmark , ' ( ' , benchmarkTicker , ' ) ' , sep = ' ' )
benchmark = Stock ( )
benchmark . setName ( benchmarkTicker )
return benchmark
def stocksInit ( ) :
listOfStocks = [ ]
2019-02-14 12:17:22 -08:00
print ( ' \n This program can analyze stocks (GOOGL), mutual funds (VFINX), and ETFs (SPY) ' )
2019-03-01 11:06:09 -08:00
print ( ' For simplicity, all of them will be referred to as " stock " ' )
found = False
2019-04-08 07:19:39 -07:00
while found is False :
2019-03-01 11:06:09 -08:00
print ( ' \n Methods: ' )
method = 0
methods = [ ' Read from a file ' , ' Enter manually ' ,
2019-04-08 07:19:39 -07:00
' Kiplinger top-performing funds (50) ' ,
' TheStreet top-rated mutual funds (20) ' ,
' Money best mutual funds (50) ' ,
2019-04-19 09:40:30 -07:00
' Investors Business Daily best mutual funds (~45) ' ]
2019-04-08 07:19:39 -07:00
for i in range ( 0 , len ( methods ) , 1 ) :
2019-04-15 23:08:01 -07:00
print ( ' [ ' + str ( i + 1 ) + ' ] ' + methods [ i ] )
2019-04-08 07:19:39 -07:00
while method == 0 or method > len ( methods ) :
method = str ( input ( ' Which method? ' ) )
if Functions . stringIsInt ( method ) is True :
method = int ( method )
if method == 0 or method > len ( methods ) :
2019-04-19 09:40:30 -07:00
print ( ' Please choose a number from 1 to ' , len ( methods ) )
2019-04-08 07:19:39 -07:00
else :
method = 0
print ( ' Please choose a number ' )
2019-03-18 10:26:07 -07:00
print ( ' ' )
2019-03-01 11:06:09 -08:00
if method == 1 :
defaultFiles = [ ' .gitignore ' , ' LICENSE ' , ' main.py ' , ' Functions.py ' ,
2019-04-08 07:19:39 -07:00
' README.md ' , ' requirements.txt ' , ' cache.sqlite ' ,
2019-04-15 23:08:01 -07:00
' config.json ' , ' CONTRIBUTING.md ' ,
' config.example.json ' , ' _test_runner.py ' ,
' CODE-OF-CONDUCT.md ' ]
2019-04-08 07:19:39 -07:00
# Added by repl.it for whatever reason
2019-03-01 11:06:09 -08:00
stocksFound = False
2019-04-08 07:19:39 -07:00
print ( ' Files in current directory (without default files): ' )
2019-03-01 11:06:09 -08:00
listOfFilesTemp = [ f for f in os . listdir ( ) if os . path . isfile ( f ) ]
listOfFiles = [ ]
for files in listOfFilesTemp :
2019-04-08 07:19:39 -07:00
if files [ 0 ] != ' . ' and any ( x in files for x in defaultFiles ) is not True :
2019-03-01 11:06:09 -08:00
listOfFiles . append ( files )
for i in range ( 0 , len ( listOfFiles ) , 1 ) :
if listOfFiles [ i ] [ 0 ] != ' . ' :
2019-04-15 23:08:01 -07:00
print ( ' [ ' + str ( i + 1 ) + ' ] ' + listOfFiles [ i ] )
2019-04-08 07:19:39 -07:00
while stocksFound is False :
2019-03-01 11:06:09 -08:00
fileName = str ( input ( ' What is the file number/name? ' ) )
2019-04-08 07:19:39 -07:00
if Functions . stringIsInt ( fileName ) is True :
2019-03-01 11:06:09 -08:00
if int ( fileName ) < len ( listOfFiles ) + 1 and int ( fileName ) > 0 :
fileName = listOfFiles [ int ( fileName ) - 1 ]
print ( fileName )
2019-04-08 07:19:39 -07:00
if Functions . fileExists ( fileName ) is True :
2019-03-01 11:06:09 -08:00
listOfStocks = [ ]
file = open ( fileName , ' r ' )
n = file . read ( )
file . close ( )
s = re . findall ( r ' [^,; \ s]+ ' , n )
for i in s :
2019-04-08 07:19:39 -07:00
if str ( i ) != ' ' and Functions . hasNumbers ( str ( i ) ) is False :
2019-03-01 11:06:09 -08:00
listOfStocks . append ( str ( i ) . upper ( ) )
stocksFound = True
else :
print ( ' File not found ' )
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
stockName = listOfStocks [ i ] . upper ( )
listOfStocks [ i ] = Stock ( )
listOfStocks [ i ] . setName ( stockName )
for k in listOfStocks :
print ( k . name , end = ' ' )
print ( ' \n ' + str ( len ( listOfStocks ) ) + ' stocks total ' )
elif method == 2 :
isInteger = False
2019-04-08 07:19:39 -07:00
while isInteger is False :
2019-04-15 23:08:01 -07:00
temp = input ( ' Number of stocks to analyze (2 minimum): ' )
2019-03-01 11:06:09 -08:00
isInteger = Functions . stringIsInt ( temp )
2019-04-08 07:19:39 -07:00
if isInteger is True :
2019-03-01 11:06:09 -08:00
if int ( temp ) > = 2 :
numberOfStocks = int ( temp )
else :
print ( ' Please type a number greater than or equal to 2 ' )
isInteger = False
else :
print ( ' Please type an integer ' )
i = 0
while i < numberOfStocks :
print ( ' Stock ' , i + 1 , end = ' ' )
stockName = str ( input ( ' ticker: ' ) )
2019-04-08 07:19:39 -07:00
if stockName != ' ' and Functions . hasNumbers ( stockName ) is False :
2019-03-01 11:06:09 -08:00
stockName = stockName . upper ( )
listOfStocks . append ( stockName )
listOfStocks [ i ] = Stock ( )
listOfStocks [ i ] . setName ( stockName )
i + = 1
else :
print ( ' Invalid ticker ' )
elif method == 3 :
listOfStocks = [ ]
2019-04-08 07:19:39 -07:00
url = ' https://www.kiplinger.com/tool/investing/T041-S001-top-performing-mutual-funds/index.php '
2019-03-01 11:06:09 -08:00
headers = {
2019-04-08 07:19:39 -07:00
' User-Agent ' : ' Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36 ' }
2019-04-20 10:42:40 -07:00
cprint ( ' Fetch: ' + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
f = requests . get ( url , headers = headers )
2019-03-01 11:06:09 -08:00
Functions . fromCache ( f )
raw_html = f . text
soup = BeautifulSoup ( raw_html , ' html.parser ' )
2019-04-08 07:19:39 -07:00
file = open ( ' kiplinger-stocks.txt ' , ' w ' )
r = soup . find_all ( ' a ' , attrs = { ' style ' : ' font-weight:700; ' } )
2019-03-01 11:06:09 -08:00
for k in r :
print ( k . text . strip ( ) , end = ' ' )
listOfStocks . append ( k . text . strip ( ) )
file . write ( str ( k . text . strip ( ) ) + ' \n ' )
file . close ( )
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
stockName = listOfStocks [ i ] . upper ( )
listOfStocks [ i ] = Stock ( )
listOfStocks [ i ] . setName ( stockName )
print ( ' \n ' + str ( len ( listOfStocks ) ) + ' mutual funds total ' )
elif method == 4 :
listOfStocks = [ ]
2019-04-08 07:19:39 -07:00
url = ' https://www.thestreet.com/topic/21421/top-rated-mutual-funds.html '
2019-03-01 11:06:09 -08:00
headers = {
' User-Agent ' : ' Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36 ' }
2019-04-20 10:42:40 -07:00
cprint ( ' Fetch: ' + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
f = requests . get ( url , headers = headers )
2019-03-01 11:06:09 -08:00
Functions . fromCache ( f )
raw_html = f . text
soup = BeautifulSoup ( raw_html , ' html.parser ' )
2019-04-08 07:19:39 -07:00
file = open ( ' thestreet-stocks.txt ' , ' w ' )
r = soup . find_all ( ' a ' )
2019-03-01 11:06:09 -08:00
for k in r :
2019-04-08 07:19:39 -07:00
if len ( k . text . strip ( ) ) == 5 :
n = re . findall ( r ' ^/quote/.* \ .html ' , k [ ' href ' ] )
if len ( n ) != 0 :
print ( k . text . strip ( ) , end = ' ' )
listOfStocks . append ( k . text . strip ( ) )
file . write ( str ( k . text . strip ( ) ) + ' \n ' )
2019-03-01 11:06:09 -08:00
file . close ( )
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
stockName = listOfStocks [ i ] . upper ( )
listOfStocks [ i ] = Stock ( )
listOfStocks [ i ] . setName ( stockName )
print ( ' \n ' + str ( len ( listOfStocks ) ) + ' mutual funds total ' )
elif method == 5 :
listOfStocks = [ ]
2019-04-08 07:19:39 -07:00
url = ' http://money.com/money/4616747/best-mutual-funds-etfs-money-50/ '
2019-03-01 11:06:09 -08:00
headers = {
' User-Agent ' : ' Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36 ' }
2019-04-20 10:42:40 -07:00
cprint ( ' Fetch: ' + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
f = requests . get ( url , headers = headers )
2019-03-01 11:06:09 -08:00
Functions . fromCache ( f )
raw_html = f . text
soup = BeautifulSoup ( raw_html , ' html.parser ' )
2019-04-08 07:19:39 -07:00
file = open ( ' money.com-stocks.txt ' , ' w ' )
r = soup . find_all ( ' td ' )
2019-03-01 11:06:09 -08:00
for k in r :
2019-04-08 07:19:39 -07:00
t = k . text . strip ( )
if ' ( ' in t and ' ) ' in t :
t = t . split ( ' ( ' ) [ 1 ]
t = t . split ( ' ) ' ) [ 0 ]
print ( t , end = ' ' )
listOfStocks . append ( t )
file . write ( str ( t + ' \n ' ) )
file . close ( )
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
stockName = listOfStocks [ i ] . upper ( )
listOfStocks [ i ] = Stock ( )
listOfStocks [ i ] . setName ( stockName )
print ( ' \n ' + str ( len ( listOfStocks ) ) + ' mutual funds total ' )
elif method == 6 :
listOfStocks = [ ]
listOfStocksOriginal = [ ]
url = ' https://www.investors.com/etfs-and-funds/mutual-funds/best-mutual-funds-beating-sp-500-over-last-1-3-5-10-years/ '
headers = {
' User-Agent ' : ' Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36 ' }
2019-04-20 10:42:40 -07:00
cprint ( ' Fetch: ' + url , ' white ' , attrs = [ ' dark ' ] )
2019-04-08 07:19:39 -07:00
with Halo ( spinner = ' dots ' ) :
f = requests . get ( url , headers = headers )
Functions . fromCache ( f )
raw_html = f . text
soup = BeautifulSoup ( raw_html , ' html.parser ' )
file = open ( ' investors-stocks.txt ' , ' w ' )
r = soup . find_all ( ' td ' )
for k in r :
t = k . text . strip ( )
if len ( t ) == 5 and Functions . strintIsFloat ( t ) is False :
if t not in listOfStocksOriginal or listOfStocksOriginal == [ ] :
2019-04-15 23:08:01 -07:00
if t [ - 1 ] != ' % ' :
listOfStocksOriginal . append ( t )
print ( t , end = ' ' )
listOfStocks . append ( k . text . strip ( ) )
file . write ( str ( k . text . strip ( ) ) + ' \n ' )
2019-03-01 11:06:09 -08:00
file . close ( )
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
stockName = listOfStocks [ i ] . upper ( )
listOfStocks [ i ] = Stock ( )
listOfStocks [ i ] . setName ( stockName )
print ( ' \n ' + str ( len ( listOfStocks ) ) + ' mutual funds total ' )
if len ( listOfStocks ) < 2 :
print ( ' Please choose another method ' )
else :
found = True
2019-01-31 13:22:02 -08:00
return listOfStocks
2019-02-21 11:43:46 -08:00
def asyncData ( benchmark , listOfStocks ) :
# Make list of urls to send requests to
urlList = [ ]
# Benchmark
url = ' ' . join ( ( ' https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol= ' ,
benchmark . name , ' &outputsize=full&apikey= ' , apiAV ) )
urlList . append ( url )
# Stocks
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
# Alpha Vantage
url = ' ' . join ( ( ' https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol= ' ,
listOfStocks [ i ] . name , ' &outputsize=full&apikey= ' , apiAV ) )
urlList . append ( url )
# Risk-free rate
url = ' ' . join (
( ' https://www.quandl.com/api/v3/datasets/USTREASURY/LONGTERMRATES.json?api_key= ' , apiQuandl ) )
urlList . append ( url )
2019-03-01 11:06:09 -08:00
# Yahoo Finance
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
url = ' ' . join ( ( ' https://finance.yahoo.com/quote/ ' ,
listOfStocks [ i ] . name , ' ?p= ' , listOfStocks [ i ] . name ) )
urlList . append ( url )
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
url = ' ' . join (
( ' https://finance.yahoo.com/lookup?s= ' , listOfStocks [ i ] . name ) )
urlList . append ( url )
2019-02-21 11:43:46 -08:00
# Send async requests
print ( ' \n Sending async requests (Assuming Alpha Vantage is first choice) ' )
with PoolExecutor ( max_workers = 3 ) as executor :
for _ in executor . map ( sendAsync , urlList ) :
pass
return
def sendAsync ( url ) :
2019-03-01 11:06:09 -08:00
time . sleep ( random . randrange ( 0 , 2 ) )
2019-04-20 10:42:40 -07:00
cprint ( ' Fetch: ' + url , ' white ' , attrs = [ ' dark ' ] )
2019-02-21 11:43:46 -08:00
requests . get ( url )
return
2019-01-31 13:22:02 -08:00
def timeFrameInit ( ) :
2019-02-14 12:17:22 -08:00
isInteger = False
2019-04-19 09:40:30 -07:00
print ( ' ' )
2019-04-08 07:19:39 -07:00
while isInteger is False :
2019-02-14 12:17:22 -08:00
print (
2019-04-19 09:40:30 -07:00
' Please enter the time frame in months (<60 recommended): ' , end = ' ' )
2019-02-14 12:17:22 -08:00
temp = input ( ' ' )
isInteger = Functions . stringIsInt ( temp )
2019-04-08 07:19:39 -07:00
if isInteger is True :
2019-03-18 10:26:07 -07:00
if int ( temp ) > 1 and int ( temp ) < 1000 :
2019-03-01 11:06:09 -08:00
months = int ( temp )
2019-04-19 09:40:30 -07:00
elif int ( temp ) > = 1000 :
print ( ' Please enter a number less than 1000 ' )
isInteger = False
2019-03-01 11:06:09 -08:00
else :
print ( ' Please enter a number greater than 1 ' )
isInteger = False
2019-02-14 12:17:22 -08:00
else :
print ( ' Please type an integer ' )
2019-03-01 11:06:09 -08:00
timeFrame = months
2019-01-31 13:22:02 -08:00
return timeFrame
def dataMain ( listOfStocks ) :
2019-02-14 12:17:22 -08:00
i = 0
while i < len ( listOfStocks ) :
2019-01-31 13:22:02 -08:00
2019-04-08 07:19:39 -07:00
try :
datesAndCloseList = Stock . datesAndClose ( listOfStocks [ i ] )
except :
print ( ' Error retrieving data ' )
datesAndCloseList = ' N/A '
2019-03-18 10:26:07 -07:00
if datesAndCloseList == ' N/A ' :
2019-02-14 12:17:22 -08:00
del listOfStocks [ i ]
if len ( listOfStocks ) == 0 :
2019-03-18 10:26:07 -07:00
# print('No stocks to analyze. Ending program')
cprint ( ' No stocks to analyze. Ending program ' , ' white ' , ' on_red ' )
2019-02-14 12:17:22 -08:00
exit ( )
else :
listOfStocks [ i ] . allDates = datesAndCloseList [ 0 ]
listOfStocks [ i ] . allCloseValues = datesAndCloseList [ 1 ]
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
# Clip list to fit time frame
datesAndCloseList2 = Stock . datesAndCloseFitTimeFrame (
listOfStocks [ i ] )
listOfStocks [ i ] . dates = datesAndCloseList2 [ 0 ]
listOfStocks [ i ] . closeValues = datesAndCloseList2 [ 1 ]
i + = 1
def riskFreeRate ( ) :
print ( ' Quandl ' )
url = ' ' . join (
( ' https://www.quandl.com/api/v3/datasets/USTREASURY/LONGTERMRATES.json?api_key= ' , apiQuandl ) )
# https://www.quandl.com/api/v3/datasets/USTREASURY/LONGTERMRATES.json?api_key=KUh3U3hxke9tCimjhWEF
2019-04-20 10:42:40 -07:00
cprint ( ' \n Fetch: ' + url , ' white ' , attrs = [ ' dark ' ] )
2019-03-18 10:26:07 -07:00
with Halo ( spinner = ' dots ' ) :
f = requests . get ( url )
2019-02-14 12:17:22 -08:00
Functions . fromCache ( f )
json_data = f . text
loaded_json = json . loads ( json_data )
riskFreeRate = ( loaded_json [ ' dataset ' ] [ ' data ' ] [ 0 ] [ 1 ] ) / 100
riskFreeRate = riskFreeRate * 100
riskFreeRate = round ( riskFreeRate , 2 )
print ( ' Risk-free rate: ' , riskFreeRate , end = ' \n \n ' )
2019-02-21 11:43:46 -08:00
if f . status_code != 200 :
2019-03-18 10:26:07 -07:00
print ( ' Quandl not available ' )
2019-02-14 12:17:22 -08:00
print ( ' Returning 2.50 as risk-free rate ' , end = ' \n \n ' )
# return 0.0250
return 2.50
return riskFreeRate
2019-01-31 13:22:02 -08:00
def returnMain ( benchmark , listOfStocks ) :
2019-03-18 10:26:07 -07:00
cprint ( ' \n Calculating return statistics \n ' , ' white ' , attrs = [ ' underline ' ] )
2019-02-14 12:17:22 -08:00
print ( ' Getting risk-free rate from current 10-year treasury bill rates ' , end = ' \n \n ' )
Stock . riskFreeRate = riskFreeRate ( )
2019-03-18 10:26:07 -07:00
cprint ( benchmark . name , ' cyan ' )
2019-03-01 11:06:09 -08:00
benchmark . monthlyReturn = Stock . calcMonthlyReturn ( benchmark )
2019-03-18 10:26:07 -07:00
if benchmark . monthlyReturn == ' N/A ' :
# print('Please use a lower time frame\nEnding program')
cprint ( ' Please use a lower time frame. Ending program ' , ' white ' , ' on_red ' )
2019-02-14 12:17:22 -08:00
exit ( )
2019-03-01 11:06:09 -08:00
benchmark . averageMonthlyReturn = Stock . calcAverageMonthlyReturn ( benchmark )
2019-02-14 12:17:22 -08:00
benchmark . standardDeviation = Stock . calcStandardDeviation ( benchmark )
2019-01-31 13:22:02 -08:00
# Make benchmark data global
Stock . benchmarkDates = benchmark . dates
Stock . benchmarkCloseValues = benchmark . closeValues
2019-03-01 11:06:09 -08:00
Stock . benchmarkAverageMonthlyReturn = benchmark . averageMonthlyReturn
2019-02-14 12:17:22 -08:00
Stock . benchmarkStandardDeviation = benchmark . standardDeviation
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
i = 0
while i < len ( listOfStocks ) :
2019-03-18 10:26:07 -07:00
cprint ( ' \n ' + listOfStocks [ i ] . name , ' cyan ' )
2019-01-31 13:22:02 -08:00
# Make sure each date has a value for both the benchmark and the stock
list1 = [ ]
list2 = [ ]
list1 . append ( listOfStocks [ i ] . dates )
list1 . append ( listOfStocks [ i ] . closeValues )
list2 . append ( Stock . benchmarkDates )
list2 . append ( Stock . benchmarkCloseValues )
temp = Functions . removeExtraDatesAndCloseValues ( list1 , list2 )
listOfStocks [ i ] . datesMatchBenchmark = temp [ 0 ] [ 0 ]
listOfStocks [ i ] . closeValuesMatchBenchmark = temp [ 0 ] [ 1 ]
benchmarkMatchDatesAndCloseValues = temp [ 1 ]
2019-02-14 12:17:22 -08:00
# Calculate everything for each stock
2019-03-01 11:06:09 -08:00
listOfStocks [ i ] . monthlyReturn = Stock . calcMonthlyReturn (
listOfStocks [ i ] )
2019-03-18 10:26:07 -07:00
if listOfStocks [ i ] . monthlyReturn == ' N/A ' :
2019-04-20 10:42:40 -07:00
cprint ( ' Removing ' +
listOfStocks [ i ] . name + ' from list of stocks ' , ' yellow ' )
2019-02-14 12:17:22 -08:00
del listOfStocks [ i ]
if len ( listOfStocks ) == 0 :
2019-04-21 15:59:16 -07:00
# print('No stocks fit time frame. Ending program')
2019-03-18 10:26:07 -07:00
cprint ( ' No stocks fit time frame. Ending program ' ,
' white ' , ' on_red ' )
2019-02-14 12:17:22 -08:00
exit ( )
else :
2019-03-01 11:06:09 -08:00
listOfStocks [ i ] . averageMonthlyReturn = Stock . calcAverageMonthlyReturn (
2019-02-14 12:17:22 -08:00
listOfStocks [ i ] )
listOfStocks [ i ] . correlation = Stock . calcCorrelation (
listOfStocks [ i ] , benchmarkMatchDatesAndCloseValues [ 1 ] )
listOfStocks [ i ] . standardDeviation = Stock . calcStandardDeviation (
listOfStocks [ i ] )
listOfStocks [ i ] . downsideDeviation = Stock . calcDownsideDeviation (
listOfStocks [ i ] )
listOfStocks [ i ] . kurtosis = Stock . calcKurtosis (
listOfStocks [ i ] )
listOfStocks [ i ] . skewness = Stock . calcSkewness (
listOfStocks [ i ] )
listOfStocks [ i ] . beta = Stock . calcBeta ( listOfStocks [ i ] )
listOfStocks [ i ] . alpha = Stock . calcAlpha ( listOfStocks [ i ] )
listOfStocks [ i ] . sharpe = Stock . calcSharpe ( listOfStocks [ i ] )
listOfStocks [ i ] . sortino = Stock . calcSortino ( listOfStocks [ i ] )
listOfStocks [ i ] . treynor = Stock . calcTreynor ( listOfStocks [ i ] )
2019-04-15 23:08:01 -07:00
# listOfStocks[i].linearRegression = Stock.calcLinearRegression(
# listOfStocks[i])
2019-02-14 12:17:22 -08:00
i + = 1
2019-04-15 23:08:01 -07:00
cprint ( ' \n Number of stocks that fit time frame: ' +
2019-03-18 10:26:07 -07:00
str ( len ( listOfStocks ) ) , ' green ' )
2019-03-01 11:06:09 -08:00
if len ( listOfStocks ) < 2 :
2019-04-19 09:40:30 -07:00
# print('Cannot proceed to the next step. Exiting program')
2019-04-21 15:59:16 -07:00
cprint ( ' Unable to proceed. Exiting program ' ,
2019-03-18 10:26:07 -07:00
' white ' , ' on_red ' )
2019-03-01 11:06:09 -08:00
exit ( )
2019-02-14 12:17:22 -08:00
2019-03-18 10:26:07 -07:00
def outlierChoice ( ) :
print ( ' \n Would you like to remove indicator outliers? ' )
2019-04-19 09:40:30 -07:00
return Functions . trueOrFalse ( )
2019-03-18 10:26:07 -07:00
2019-02-14 12:17:22 -08:00
def indicatorInit ( ) :
# Runs correlation or regression study
indicatorFound = False
listOfIndicators = [ ' Expense Ratio ' ,
' Market Capitalization ' , ' Turnover ' , ' Persistence ' ]
print ( ' \n ' , end = ' ' )
2019-03-01 11:06:09 -08:00
print ( ' List of indicators: ' )
for i in range ( 0 , len ( listOfIndicators ) , 1 ) :
2019-04-15 23:08:01 -07:00
print ( ' [ ' + str ( i + 1 ) + ' ] ' + listOfIndicators [ i ] )
2019-04-08 07:19:39 -07:00
while indicatorFound is False :
2019-02-14 12:17:22 -08:00
indicator = str ( input ( ' Choose an indicator from the list: ' ) )
# indicator = 'expense ratio' # TESTING
2019-04-08 07:19:39 -07:00
if Functions . stringIsInt ( indicator ) is True :
2019-03-01 11:06:09 -08:00
if int ( indicator ) < = 4 and int ( indicator ) > 0 :
2019-02-14 12:17:22 -08:00
indicator = listOfIndicators [ int ( indicator ) - 1 ]
indicatorFound = True
else :
indicatorFormats = [
indicator . upper ( ) , indicator . lower ( ) , indicator . title ( ) ]
for i in range ( 0 , len ( indicatorFormats ) , 1 ) :
for j in range ( 0 , len ( listOfIndicators ) , 1 ) :
if listOfIndicators [ j ] == indicatorFormats [ i ] :
indicator = listOfIndicators [ j ]
indicatorFound = True
break
2019-04-08 07:19:39 -07:00
if indicatorFound is False :
2019-04-20 10:42:40 -07:00
print ( ' Please choose a number from 1 to ' , len (
listOfIndicators ) , ' or type an answer ' )
2019-02-14 12:17:22 -08:00
return indicator
def calcIndicatorCorrelation ( listOfIndicatorValues , listOfReturns ) :
correlationList = [ ]
for i in range ( 0 , len ( listOfReturns ) , 1 ) :
correlation = np . corrcoef (
listOfIndicatorValues , listOfReturns [ i ] ) [ 0 , 1 ]
correlationList . append ( correlation )
return correlationList
def calcIndicatorRegression ( listOfIndicatorValues , listOfReturns ) :
regressionList = [ ]
x = np . array ( listOfIndicatorValues )
for i in range ( 0 , len ( listOfReturns ) , 1 ) :
y = np . array ( listOfReturns [ i ] )
# Estimate coefficients
# number of observations/points
n = np . size ( x )
# mean of x and y vector
m_x , m_y = np . mean ( x ) , np . mean ( y )
# calculating cross-deviation and deviation about x
SS_xy = np . sum ( y * x ) - n * m_y * m_x
SS_xx = np . sum ( x * x ) - n * m_x * m_x
# calculating regression coefficients
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1 * m_x
b = [ b_0 , b_1 ]
regression = [ ]
regression . append ( b [ 0 ] )
regression . append ( b [ 1 ] )
regressionList . append ( regression )
2019-04-15 23:08:01 -07:00
if Stock . plotIndicatorRegression is True :
plot_regression_line ( x , y , b , i )
2019-02-14 12:17:22 -08:00
return regressionList
def plot_regression_line ( x , y , b , i ) :
# plotting the actual points as scatter plot
plt . scatter ( x , y , color = " m " ,
marker = " o " , s = 30 )
# predicted response vector
y_pred = b [ 0 ] + b [ 1 ] * x
# plotting the regression line
plt . plot ( x , y_pred , color = " g " )
# putting labels
2019-03-01 11:06:09 -08:00
listOfReturnStrings = [ ' Average Monthly Return ' ,
2019-02-14 12:17:22 -08:00
' Sharpe Ratio ' , ' Sortino Ratio ' , ' Treynor Ratio ' , ' Alpha ' ]
plt . title ( Stock . indicator + ' and ' + listOfReturnStrings [ i ] )
2019-03-01 11:06:09 -08:00
if Stock . indicator == ' Expense Ratio ' or Stock . indicator == ' Turnover ' :
2019-02-14 12:17:22 -08:00
plt . xlabel ( Stock . indicator + ' ( % ) ' )
2019-03-01 11:06:09 -08:00
elif Stock . indicator == ' Persistence ' :
plt . xlabel ( Stock . indicator + ' (Difference in average monthly return) ' )
2019-03-18 10:26:07 -07:00
elif Stock . indicator == ' Market Capitalization ' :
plt . xlabel ( Stock . indicator + ' (millions) ' )
2019-02-14 12:17:22 -08:00
else :
plt . xlabel ( Stock . indicator )
if i == 0 :
plt . ylabel ( listOfReturnStrings [ i ] + ' ( % ) ' )
else :
plt . ylabel ( listOfReturnStrings [ i ] )
# function to show plot
2019-04-21 22:16:55 -07:00
try :
t = Stock . timePlotIndicatorRegression
plt . show ( block = False )
for i in range ( t , 0 , - 1 ) :
if i == 1 :
sys . stdout . write ( ' Keeping plot open for ' +
str ( i ) + ' second \r ' )
else :
sys . stdout . write ( ' Keeping plot open for ' +
str ( i ) + ' seconds \r ' )
plt . pause ( 1 )
sys . stdout . flush ( )
sys . stdout . write ( ' \r ' )
sys . stdout . flush ( )
plt . close ( )
except :
sys . stdout . write ( ' \r ' )
2019-02-14 12:17:22 -08:00
sys . stdout . flush ( )
2019-03-01 11:06:09 -08:00
def persistenceTimeFrame ( ) :
print ( ' \n Time frame you chose was ' , Stock . timeFrame , ' months ' )
persTimeFrameFound = False
2019-04-08 07:19:39 -07:00
while persTimeFrameFound is False :
2019-03-01 11:06:09 -08:00
persistenceTimeFrame = str (
input ( ' Please choose how many months to measure persistence: ' ) )
2019-04-08 07:19:39 -07:00
if Functions . stringIsInt ( persistenceTimeFrame ) is True :
2019-03-01 11:06:09 -08:00
if int ( persistenceTimeFrame ) > 0 and int ( persistenceTimeFrame ) < Stock . timeFrame - 1 :
persistenceTimeFrame = int ( persistenceTimeFrame )
persTimeFrameFound = True
else :
print ( ' Please choose a number between 0 and ' ,
Stock . timeFrame , end = ' \n ' )
else :
print ( ' Please choose an integer between 0 and ' ,
Stock . timeFrame , end = ' \n ' )
2019-02-14 12:17:22 -08:00
2019-03-01 11:06:09 -08:00
return persistenceTimeFrame
def indicatorMain ( listOfStocks ) :
2019-03-18 10:26:07 -07:00
cprint ( ' \n ' + str ( Stock . indicator ) + ' \n ' , ' white ' , attrs = [ ' underline ' ] )
2019-02-14 12:17:22 -08:00
listOfStocksIndicatorValues = [ ]
2019-04-19 09:40:30 -07:00
i = 0
while i < len ( listOfStocks ) :
2019-03-18 10:26:07 -07:00
cprint ( listOfStocks [ i ] . name , ' cyan ' )
if Stock . indicator == ' Persistence ' :
listOfStocks [ i ] . indicatorValue = Stock . calcPersistence (
2019-03-01 11:06:09 -08:00
listOfStocks [ i ] )
else :
2019-04-08 07:19:39 -07:00
try :
listOfStocks [ i ] . indicatorValue = Stock . scrapeYahooFinance (
listOfStocks [ i ] )
except :
print ( ' Error retrieving indicator data ' )
2019-04-21 15:59:16 -07:00
print ( ' \n Would you like to enter a ' + str ( Stock . indicator ) + ' value for ' + str ( listOfStocks [ i ] . name ) + ' ? ' )
r = Functions . trueOrFalse ( )
if r is True :
listOfStocks [ i ] . indicatorValue = ' Remove '
else :
listOfStocks [ i ] . indicatorValue = ' N/A '
2019-02-14 12:17:22 -08:00
2019-03-18 10:26:07 -07:00
if listOfStocks [ i ] . indicatorValue == ' N/A ' :
2019-03-01 11:06:09 -08:00
listOfStocks [ i ] . indicatorValue = Stock . indicatorManual (
listOfStocks [ i ] )
2019-04-21 15:59:16 -07:00
elif listOfStocks [ i ] . indicatorValue == ' Stock ' or listOfStocks [ i ] . indicatorValue == ' Remove ' :
2019-04-20 10:42:40 -07:00
cprint ( ' Removing ' +
listOfStocks [ i ] . name + ' from list of stocks ' , ' yellow ' )
2019-03-18 10:26:07 -07:00
del listOfStocks [ i ]
if len ( listOfStocks ) < 2 :
# print('Not able to go to the next step. Ending program')
2019-04-21 15:59:16 -07:00
cprint ( ' Unable to proceed. Ending program ' ,
2019-03-18 10:26:07 -07:00
' white ' , ' on_red ' )
exit ( )
2019-04-19 09:40:30 -07:00
else :
2019-04-20 10:42:40 -07:00
listOfStocks [ i ] . indicatorValue = float (
listOfStocks [ i ] . indicatorValue )
2019-04-19 09:40:30 -07:00
listOfStocksIndicatorValues . append ( listOfStocks [ i ] . indicatorValue )
i = i + 1
2019-04-21 15:59:16 -07:00
print ( ' ' )
2019-02-14 12:17:22 -08:00
2019-03-18 10:26:07 -07:00
# Remove outliers
2019-04-08 07:19:39 -07:00
if Stock . removeOutliers is True :
2019-03-18 10:26:07 -07:00
cprint ( ' \n Removing outliers \n ' , ' white ' , attrs = [ ' underline ' ] )
temp = Functions . removeOutliers ( listOfStocksIndicatorValues )
if temp [ 0 ] == listOfStocksIndicatorValues :
2019-04-08 07:19:39 -07:00
print ( ' No indicator outliers \n ' )
2019-03-18 10:26:07 -07:00
else :
print ( ' First quartile: ' , temp [ 2 ] , ' , Median: ' , temp [ 3 ] ,
' , Third quartile: ' , temp [ 4 ] , ' Interquartile range: ' , temp [ 5 ] )
# print('Original list:', listOfStocksIndicatorValues)
listOfStocksIndicatorValues = temp [ 0 ]
i = 0
2019-04-19 09:40:30 -07:00
while i < len ( listOfStocks ) :
2019-03-18 10:26:07 -07:00
for j in temp [ 1 ] :
if listOfStocks [ i ] . indicatorValue == j :
2019-04-20 10:42:40 -07:00
cprint ( ' Removing ' + listOfStocks [ i ] . name + ' because it has a ' + str (
Stock . indicator . lower ( ) ) + ' value of ' + str ( listOfStocks [ i ] . indicatorValue ) , ' yellow ' )
2019-03-18 10:26:07 -07:00
del listOfStocks [ i ]
i = i - 1
break
i + = 1
# print('New list:', listOfStocksIndicatorValues, '\n')
print ( ' ' )
# Calculate data
cprint ( ' Calculating correlation and linear regression \n ' ,
' white ' , attrs = [ ' underline ' ] )
2019-04-19 09:40:30 -07:00
listOfReturns = [ ] # A list that matches the above list with return values [[averageMonthlyReturn1, aMR2, aMR3], [sharpe1, sharpe2, sharpe3], etc.]
2019-02-14 12:17:22 -08:00
tempListOfReturns = [ ]
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
2019-03-01 11:06:09 -08:00
tempListOfReturns . append ( listOfStocks [ i ] . averageMonthlyReturn )
2019-02-14 12:17:22 -08:00
listOfReturns . append ( tempListOfReturns )
tempListOfReturns = [ ]
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
tempListOfReturns . append ( listOfStocks [ i ] . sharpe )
listOfReturns . append ( tempListOfReturns )
tempListOfReturns = [ ]
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
tempListOfReturns . append ( listOfStocks [ i ] . sortino )
listOfReturns . append ( tempListOfReturns )
tempListOfReturns = [ ]
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
tempListOfReturns . append ( listOfStocks [ i ] . treynor )
listOfReturns . append ( tempListOfReturns )
tempListOfReturns = [ ]
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
tempListOfReturns . append ( listOfStocks [ i ] . alpha )
listOfReturns . append ( tempListOfReturns )
# Create list of each indicator (e.g. expense ratio)
listOfIndicatorValues = [ ]
for i in range ( 0 , len ( listOfStocks ) , 1 ) :
listOfIndicatorValues . append ( listOfStocks [ i ] . indicatorValue )
Stock . indicatorCorrelation = calcIndicatorCorrelation (
listOfIndicatorValues , listOfReturns )
2019-03-01 11:06:09 -08:00
listOfReturnStrings = [ ' Average Monthly Return ' ,
2019-02-14 12:17:22 -08:00
' Sharpe Ratio ' , ' Sortino Ratio ' , ' Treynor Ratio ' , ' Alpha ' ]
for i in range ( 0 , len ( Stock . indicatorCorrelation ) , 1 ) :
2019-03-18 10:26:07 -07:00
print ( ' Correlation for ' + Stock . indicator . lower ( ) + ' and ' +
2019-02-14 12:17:22 -08:00
listOfReturnStrings [ i ] . lower ( ) + ' : ' + str ( Stock . indicatorCorrelation [ i ] ) )
Stock . indicatorRegression = calcIndicatorRegression (
listOfIndicatorValues , listOfReturns )
print ( ' \n ' , end = ' ' )
for i in range ( 0 , len ( Stock . indicatorCorrelation ) , 1 ) :
formula = ' ' . join (
2019-04-21 15:59:16 -07:00
( ' f(x) = ' , str ( round ( float ( Stock . indicatorRegression [ i ] [ 0 ] ) , 2 ) ) , ' x + ' , str ( round ( float ( Stock . indicatorRegression [ i ] [ 1 ] ) , 2 ) ) ) )
2019-02-14 12:17:22 -08:00
print ( ' Linear regression equation for ' + Stock . indicator . lower ( ) + ' and ' +
listOfReturnStrings [ i ] . lower ( ) + ' : ' + formula )
2019-01-31 13:22:02 -08:00
2019-03-18 10:26:07 -07:00
def checkConfig ( fileName ) :
2019-04-08 07:19:39 -07:00
if Functions . fileExists ( fileName ) is False :
2019-03-18 10:26:07 -07:00
return ' N/A '
file = open ( fileName , ' r ' )
n = file . read ( )
file . close ( )
2019-04-08 07:19:39 -07:00
if Functions . validateJson ( n ) is False :
2019-03-18 10:26:07 -07:00
print ( ' Config file is not valid ' )
return ' N/A '
t = json . loads ( n )
r = t [ ' Config ' ]
return r
2019-04-15 23:08:01 -07:00
def continueProgram ( ) :
found = False
print ( ' Would you like to rerun the program? ' )
return Functions . trueOrFalse ( )
2019-03-18 10:26:07 -07:00
2019-04-15 23:08:01 -07:00
def plotIndicatorRegression ( ) :
if Functions . detectDisplay ( ) is True :
if Functions . checkPackage ( ' matplotlib ' ) is False :
print (
' matplotlib is not installed. \n If you would like to install ' +
' it (and have a display), run `pip install matplotlib` ' )
2019-04-21 15:59:16 -07:00
Stock . plotIndicatorRegression = False
2019-03-18 10:26:07 -07:00
else :
2019-04-15 23:08:01 -07:00
print ( ' \n Would you like to plot indicator linear regression '
' results? ' )
plotLinear = Functions . trueOrFalse ( )
if plotLinear is True :
2019-04-21 15:59:16 -07:00
Stock . plotIndicatorRegression = True
else :
Stock . plotIndicatorRegression = False
else :
Stock . plotIndicatorRegression = False
# Ask for how long
if Stock . plotIndicatorRegression is True :
timeFound = False
print ( ' ' )
while timeFound is False :
x = str ( input ( ' How long would you like to keep the graph up (seconds)? ' ) )
if Functions . stringIsInt ( x ) is True :
if int ( x ) > 0 :
Stock . timePlotIndicatorRegression = int ( x )
timeFound = True
else :
print ( ' Please choose a number greater than zero ' )
2019-04-15 23:08:01 -07:00
else :
2019-04-21 15:59:16 -07:00
print ( ' Please choose an integer ' )
2019-01-31 13:22:02 -08:00
2019-03-01 11:06:09 -08:00
2019-04-15 23:08:01 -07:00
def main ( ) :
'''
Check config file for errors and if not , then use values
#! Only use this if you know it is exactly correct. I haven't spent much
#! time debugging this
'''
Stock . config = checkConfig ( ' config.json ' )
2019-03-18 10:26:07 -07:00
2019-04-15 23:08:01 -07:00
runningProgram = True
while runningProgram is True :
if Stock . config == ' N/A ' :
# Check that all required packages are installed
2019-03-18 10:26:07 -07:00
packagesInstalled = Functions . checkPackages (
[ ' numpy ' , ' requests ' , ' bs4 ' , ' requests_cache ' , ' halo ' ] )
if not packagesInstalled :
exit ( )
else :
print ( ' All required packages are installed ' )
2019-04-15 23:08:01 -07:00
# Check python version is above 3.3
2019-03-18 10:26:07 -07:00
pythonVersionGood = Functions . checkPythonVersion ( )
if not pythonVersionGood :
exit ( )
2019-03-01 11:06:09 -08:00
2019-04-15 23:08:01 -07:00
# Test internet connection
2019-03-18 10:26:07 -07:00
internetConnection = Functions . isConnected ( )
if not internetConnection :
exit ( )
2019-04-15 23:08:01 -07:00
else :
Functions . getJoke ( )
# Functions.getWeather()
2019-03-18 10:26:07 -07:00
2019-04-15 23:08:01 -07:00
# Choose benchmark and makes it class Stock
2019-03-18 10:26:07 -07:00
benchmark = benchmarkInit ( )
2019-04-15 23:08:01 -07:00
# Add it to a list to work with other functions
2019-03-18 10:26:07 -07:00
benchmarkAsList = [ benchmark ]
2019-04-15 23:08:01 -07:00
# Asks for stock(s) ticker and makes them class Stock
listOfStocks = stocksInit ( )
2019-03-01 11:06:09 -08:00
2019-04-15 23:08:01 -07:00
# Determine time frame (Years)
2019-03-18 10:26:07 -07:00
timeFrame = timeFrameInit ( )
2019-04-15 23:08:01 -07:00
Stock . timeFrame = timeFrame
2019-01-31 13:22:02 -08:00
2019-04-15 23:08:01 -07:00
# Choose indicator
2019-03-18 10:26:07 -07:00
Stock . indicator = indicatorInit ( )
2019-04-15 23:08:01 -07:00
# Choose time frame for initial persistence
if Stock . indicator == ' Persistence ' :
Stock . persTimeFrame = persistenceTimeFrame ( )
2019-01-31 13:22:02 -08:00
2019-04-15 23:08:01 -07:00
# Choose whether to remove outliers or not
Stock . removeOutliers = outlierChoice ( )
# Check if matplotlib is installed and if so, ask user if
2019-04-21 15:59:16 -07:00
# they want to plot and for how long
plotIndicatorRegression ( )
2019-01-31 13:22:02 -08:00
2019-03-18 10:26:07 -07:00
else :
2019-04-15 23:08:01 -07:00
if Stock . config [ ' Check Packages ' ] is not False :
packagesInstalled = Functions . checkPackages (
[ ' numpy ' , ' requests ' , ' bs4 ' , ' requests_cache ' , ' halo ' ] )
if not packagesInstalled :
exit ( )
else :
print ( ' All required packages are installed ' )
if Stock . config [ ' Check Python Version ' ] is not False :
pythonVersionGood = Functions . checkPythonVersion ( )
if not pythonVersionGood :
exit ( )
if Stock . config [ ' Check Internet Connection ' ] is not False :
internetConnection = Functions . isConnected ( )
if not internetConnection :
exit ( )
if Stock . config [ ' Get Joke ' ] is not False :
Functions . getJoke ( )
benchmarksTicker = [ ' SPY ' , ' DJIA ' , ' VTHR ' , ' EFT ' ]
if Stock . config [ ' Benchmark ' ] in benchmarksTicker :
benchmark = Stock ( )
benchmark . setName ( str ( Stock . config [ ' Benchmark ' ] ) )
benchmarkAsList = [ benchmark ]
else :
benchmark = benchmarkInit ( )
benchmarkAsList = [ benchmark ]
2019-03-01 11:06:09 -08:00
2019-04-15 23:08:01 -07:00
listOfStocks = stocksInit ( )
2019-02-21 11:43:46 -08:00
2019-04-15 23:08:01 -07:00
if int ( Stock . config [ ' Time Frame ' ] ) > = 2 :
timeFrame = int ( Stock . config [ ' Time Frame ' ] )
else :
timeFrame = timeFrameInit ( )
Stock . timeFrame = timeFrame # Needs to be a global variable for all stocks
indicators = [ ' Expense Ratio ' ,
' Market Capitalization ' , ' Turnover ' , ' Persistence ' ]
if Stock . config [ ' Indicator ' ] in indicators :
Stock . indicator = Stock . config [ ' Indicator ' ]
else :
Stock . indicator = indicatorInit ( )
if Stock . indicator == ' Persistence ' :
Stock . persTimeFrame = persistenceTimeFrame ( )
# Choose whether to remove outliers or not
if Stock . config [ ' Remove Outliers ' ] is not False :
Stock . removeOutliers = True
else :
Stock . removeOutliers = outlierChoice ( )
2019-01-31 13:22:02 -08:00
2019-04-15 23:08:01 -07:00
# Send async request to AV for listOfStocks and benchmark
# asyncData(benchmark, listOfStocks)
2019-01-31 13:22:02 -08:00
2019-04-15 23:08:01 -07:00
# Gather data for benchmark and stock(s)
cprint ( ' \n Gathering data ' , ' white ' , attrs = [ ' underline ' ] )
dataMain ( benchmarkAsList )
dataMain ( listOfStocks )
# Calculate return for benchmark and stock(s)
returnMain ( benchmark , listOfStocks )
# Choose indicator and calculate correlation with indicator
indicatorMain ( listOfStocks )
# Decide if running program again
print ( ' ' )
runningProgram = continueProgram ( )
print ( ' ' )
2019-01-31 13:22:02 -08:00
2019-04-19 09:40:30 -07:00
print ( ' Goodbye! \n ' )
2019-01-16 08:54:06 -08:00
exit ( )
2018-12-31 16:37:51 -08:00
2019-02-14 12:17:22 -08:00
if __name__ == " __main__ " :
main ( )