fund-indicators/main.py

982 lines
34 KiB
Python
Raw Normal View History

2019-02-14 12:17:22 -08:00
# https://github.com/andrewkdinh/fund-indicators
# Determine indicators of overperforming mutual funds
2018-12-15 17:56:29 -08:00
# Andrew Dinh
2019-01-31 13:22:02 -08:00
# Python 3.6.7
2019-02-14 12:17:22 -08:00
# Required
2019-01-31 13:22:02 -08:00
import requests
import json
import datetime
import Functions
2019-02-14 12:17:22 -08:00
import numpy as np
# Required for linear regression
import matplotlib.pyplot as plt
import sys
# Optional
import requests_cache
# https://requests-cache.readthedocs.io/en/lates/user_guide.html
requests_cache.install_cache(
'requests_cache', backend='sqlite', expire_after=43200) # 12 hours
2019-01-31 13:22:02 -08:00
# API Keys
apiAV = 'O42ICUV58EIZZQMU'
# apiBarchart = 'a17fab99a1c21cd6f847e2f82b592838'
apiBarchart = 'f40b136c6dc4451f9136bb53b9e70ffa'
apiTiingo = '2e72b53f2ab4f5f4724c5c1e4d5d4ac0af3f7ca8'
apiTradier = 'n26IFFpkOFRVsB5SNTVNXicE5MPD'
2019-02-14 12:17:22 -08:00
apiQuandl = 'KUh3U3hxke9tCimjhWEF'
# apiIntrinio = 'OmNmN2E5YWI1YzYxN2Q4NzEzZDhhOTgwN2E2NWRhOWNl'
2019-01-31 13:22:02 -08:00
# If you're going to take these API keys and abuse it, you should really reconsider your life priorities
2018-12-16 17:58:25 -08:00
'''
2019-01-31 13:22:02 -08:00
API Keys:
Alpha Vantage API Key: O42ICUV58EIZZQMU
2019-02-14 12:17:22 -08:00
Barchart API Key: a17fab99a1c21cd6f847e2f82b592838
2019-01-31 13:22:02 -08:00
Possible other one? f40b136c6dc4451f9136bb53b9e70ffa
150 getHistory queries per day
Tiingo API Key: 2e72b53f2ab4f5f4724c5c1e4d5d4ac0af3f7ca8
Tradier API Key: n26IFFpkOFRVsB5SNTVNXicE5MPD
Monthly Bandwidth = 5 GB
Hourly Requests = 500
Daily Requests = 20,000
Symbol Requests = 500
2019-02-14 12:17:22 -08:00
Quandl API Key: KUh3U3hxke9tCimjhWEF
Intrinio API Key: OmNmN2E5YWI1YzYxN2Q4NzEzZDhhOTgwN2E2NWRhOWNl
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
Mutual funds?
2019-01-31 13:22:02 -08:00
Yes: Alpha Vantage, Tiingo
No: IEX, Barchart
2019-02-14 12:17:22 -08:00
Adjusted?
Yes: Alpha Vantage, IEX
No: Tiingo
2018-12-16 17:58:25 -08:00
'''
2018-12-16 14:46:56 -08:00
2019-01-31 13:22:02 -08:00
class Stock:
# GLOBAL VARIABLES
2019-02-14 12:17:22 -08:00
timeFrame = 0
riskFreeRate = 0
indicator = ''
# BENCHMARK VALUES
2019-01-31 13:22:02 -08:00
benchmarkDates = []
benchmarkCloseValues = []
2019-02-14 12:17:22 -08:00
benchmarkAverageAnnualReturn = 0
benchmarkStandardDeviation = 0
# INDICATOR VALUES
indicatorCorrelation = []
indicatorRegression = []
2019-01-31 13:22:02 -08:00
def __init__(self):
# BASIC DATA
self.name = '' # Ticker symbol
self.allDates = []
self.allCloseValues = []
self.dates = []
self.closeValues = []
self.datesMatchBenchmark = []
self.closeValuesMatchBenchmark = []
# CALCULATED RETURN
2019-02-14 12:17:22 -08:00
self.averageAnnualReturn = 0
self.annualReturn = []
2019-01-31 13:22:02 -08:00
self.sharpe = 0
2019-02-14 12:17:22 -08:00
self.sortino = 0
2019-01-31 13:22:02 -08:00
self.treynor = 0
self.alpha = 0
self.beta = 0
self.standardDeviation = 0
2019-02-14 12:17:22 -08:00
self.downsideDeviation = 0
self.kurtosis = 0
self.skewness = 0 # Not sure if I need this
self.linearRegression = [] # for y=mx+b, this list has [m,b]
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
self.indicatorValue = ''
2019-01-31 13:22:02 -08:00
def setName(self, newName):
self.name = newName
def getName(self):
return self.name
def getAllDates(self):
return self.allDates
def getAllCloseValues(self):
return self.allCloseValues
def IEX(self):
print('IEX')
url = ''.join(
('https://api.iextrading.com/1.0/stock/', self.name, '/chart/5y'))
2019-02-14 12:17:22 -08:00
# link = "https://api.iextrading.com/1.0/stock/spy/chart/5y"
2019-01-31 13:22:02 -08:00
print("\nSending request to:", url)
f = requests.get(url)
2019-02-14 12:17:22 -08:00
Functions.fromCache(f)
2019-01-31 13:22:02 -08:00
json_data = f.text
if json_data == 'Unknown symbol' or f.status_code == 404:
print("IEX not available")
return 'Not available'
loaded_json = json.loads(json_data)
listIEX = []
print("\nFinding all dates given")
allDates = []
for i in range(0, len(loaded_json), 1): # If you want to do oldest first
# for i in range(len(loaded_json)-1, -1, -1):
line = loaded_json[i]
date = line['date']
allDates.append(date)
listIEX.append(allDates)
print(len(listIEX[0]), "dates")
print("\nFinding close values for each date")
values = []
for i in range(0, len(loaded_json), 1): # If you want to do oldest first
# for i in range(len(loaded_json)-1, -1, -1):
line = loaded_json[i]
value = line['close']
values.append(value)
listIEX.append(values)
print(len(listIEX[1]), "close values")
return listIEX
def AV(self):
print('Alpha Vantage')
listAV = []
url = ''.join(('https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=',
self.name, '&outputsize=full&apikey=', apiAV))
# https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&outputsize=full&apikey=demo
print("\nSending request to:", url)
f = requests.get(url)
2019-02-14 12:17:22 -08:00
Functions.fromCache(f)
2019-01-31 13:22:02 -08:00
json_data = f.text
loaded_json = json.loads(json_data)
if len(loaded_json) == 1 or f.status_code == 404:
print("Alpha Vantage not available")
return 'Not available'
dailyTimeSeries = loaded_json['Time Series (Daily)']
listOfDates = list(dailyTimeSeries)
# listAV.append(listOfDates)
listAV.append(list(reversed(listOfDates)))
print("\nFinding close values for each date")
values = []
for i in range(0, len(listOfDates), 1):
temp = listOfDates[i]
loaded_json2 = dailyTimeSeries[temp]
2019-02-14 12:17:22 -08:00
# value = loaded_json2['4. close']
2019-01-31 13:22:02 -08:00
value = loaded_json2['5. adjusted close']
2019-02-14 12:17:22 -08:00
values.append(float(value))
2019-01-31 13:22:02 -08:00
# listAV.append(values)
listAV.append(list(reversed(values)))
print(len(listAV[1]), "close values")
return listAV
def Tiingo(self):
print('Tiingo')
token = ''.join(('Token ', apiTiingo))
headers = {
'Content-Type': 'application/json',
'Authorization': token
}
url = ''.join(('https://api.tiingo.com/tiingo/daily/', self.name))
print("\nSending request to:", url)
f = requests.get(url, headers=headers)
2019-02-14 12:17:22 -08:00
Functions.fromCache(f)
2019-01-31 13:22:02 -08:00
loaded_json = f.json()
2019-02-14 12:17:22 -08:00
if len(loaded_json) == 1 or f.status_code == 404 or loaded_json['startDate'] == None:
2019-01-31 13:22:02 -08:00
print("Tiingo not available")
return 'Not available'
listTiingo = []
print("\nFinding first and last date")
firstDate = loaded_json['startDate']
lastDate = loaded_json['endDate']
print(firstDate, '...', lastDate)
print("\nFinding all dates given", end='')
dates = []
values = []
url2 = ''.join((url, '/prices?startDate=',
firstDate, '&endDate=', lastDate))
# https://api.tiingo.com/tiingo/daily/<ticker>/prices?startDate=2012-1-1&endDate=2016-1-1
print("\nSending request to:", url2, '\n')
requestResponse2 = requests.get(url2, headers=headers)
2019-02-14 12:17:22 -08:00
Functions.fromCache(requestResponse2)
2019-01-31 13:22:02 -08:00
loaded_json2 = requestResponse2.json()
for i in range(0, len(loaded_json2)-1, 1):
line = loaded_json2[i]
dateWithTime = line['date']
temp = dateWithTime.split('T00:00:00.000Z')
date = temp[0]
dates.append(date)
value = line['close']
values.append(value)
listTiingo.append(dates)
print(len(listTiingo[0]), "dates")
print("Finding close values for each date")
# Used loop from finding dates
listTiingo.append(values)
print(len(listTiingo[1]), "close values")
return listTiingo
def datesAndClose(self):
print('\n', Stock.getName(self), sep='')
2019-02-14 12:17:22 -08:00
sourceList = ['AV', 'IEX', 'Tiingo']
# sourceList = ['IEX', 'Tiingo', 'AV']
2019-01-31 13:22:02 -08:00
# Use each source until you get a value
for j in range(0, len(sourceList), 1):
source = sourceList[j]
2019-02-14 12:17:22 -08:00
print('\nSource being used:', source)
2019-01-31 13:22:02 -08:00
if source == 'AV':
datesAndCloseList = Stock.AV(self)
elif source == 'Tiingo':
datesAndCloseList = Stock.Tiingo(self)
elif source == 'IEX':
datesAndCloseList = Stock.IEX(self)
if datesAndCloseList != 'Not available':
break
else:
if j == len(sourceList)-1:
print('\nNo sources have data for', self.name)
2019-02-14 12:17:22 -08:00
print('Removing', self.name,
'from list of stocks to ensure compatibility later')
return 'Not available'
2019-01-31 13:22:02 -08:00
# Convert dates to datetime
allDates = datesAndCloseList[0]
for j in range(0, len(allDates), 1):
allDates[j] = Functions.stringToDate(allDates[j])
datesAndCloseList[0] = allDates
return datesAndCloseList
2019-02-14 12:17:22 -08:00
def datesAndCloseFitTimeFrame(self):
2019-01-31 13:22:02 -08:00
print('Shortening list to fit time frame')
# Have to do this because if I just make dates = self.allDates & closeValues = self.allCloseValues, then deleting from dates & closeValues also deletes it from self.allDates & self.allCloseValues (I'm not sure why)
dates = []
closeValues = []
for i in range(0, len(self.allDates), 1):
dates.append(self.allDates[i])
closeValues.append(self.allCloseValues[i])
firstDate = datetime.datetime.now().date() - datetime.timedelta(
2019-02-14 12:17:22 -08:00
days=self.timeFrame*365)
print('\n', self.timeFrame, ' years ago: ', firstDate, sep='')
2019-01-31 13:22:02 -08:00
closestDate = Functions.getNearest(dates, firstDate)
if closestDate != firstDate:
print('Closest date available for', self.name, ':', closestDate)
firstDate = closestDate
else:
print(self.name, 'has a close value for', firstDate)
# Remove dates in list up to firstDate
while dates[0] != firstDate:
dates.remove(dates[0])
# Remove close values until list is same length as dates
while len(closeValues) != len(dates):
closeValues.remove(closeValues[0])
datesAndCloseList2 = []
datesAndCloseList2.append(dates)
datesAndCloseList2.append(closeValues)
print(len(dates), 'dates')
print(len(closeValues), 'close values')
return datesAndCloseList2
2019-02-14 12:17:22 -08:00
def calcAverageAnnualReturn(self): # pylint: disable=E0202
# averageAnnualReturn = (float(self.closeValues[len(self.closeValues)-1]/self.closeValues[0])**(1/(self.timeFrame)))-1
# averageAnnualReturn = averageAnnualReturn * 100
averageAnnualReturn = sum(self.annualReturn)/self.timeFrame
print('Average annual return:', averageAnnualReturn)
return averageAnnualReturn
def calcAnnualReturn(self):
annualReturn = []
# Calculate annual return in order from oldest to newest
annualReturn = []
for i in range(0, self.timeFrame, 1):
firstDate = datetime.datetime.now().date() - datetime.timedelta(
days=(self.timeFrame-i)*365)
secondDate = datetime.datetime.now().date() - datetime.timedelta(
days=(self.timeFrame-i-1)*365)
# Find closest dates to firstDate and lastDate
firstDate = Functions.getNearest(self.dates, firstDate)
secondDate = Functions.getNearest(self.dates, secondDate)
if firstDate == secondDate:
print('Closest date is', firstDate,
'which is after the given time frame.')
return 'Not available'
# Get corresponding close values and calculate annual return
for i in range(0, len(self.dates), 1):
if self.dates[i] == firstDate:
firstClose = self.closeValues[i]
elif self.dates[i] == secondDate:
secondClose = self.closeValues[i]
break
annualReturnTemp = (secondClose/firstClose)-1
annualReturnTemp = annualReturnTemp * 100
annualReturn.append(annualReturnTemp)
print('Annual return over the past',
self.timeFrame, 'years:', annualReturn)
return annualReturn
def calcCorrelation(self, closeList):
correlation = np.corrcoef(
self.closeValuesMatchBenchmark, closeList)[0, 1]
print('Correlation with benchmark:', correlation)
return correlation
def calcStandardDeviation(self):
numberOfValues = self.timeFrame
mean = self.averageAnnualReturn
standardDeviation = (
(sum((self.annualReturn[x]-mean)**2 for x in range(0, numberOfValues, 1)))/(numberOfValues-1))**(1/2)
print('Standard Deviation:', standardDeviation)
return standardDeviation
def calcDownsideDeviation(self):
numberOfValues = self.timeFrame
targetReturn = self.averageAnnualReturn
downsideDeviation = (
(sum(min(0, (self.annualReturn[x]-targetReturn))**2 for x in range(0, numberOfValues, 1)))/(numberOfValues-1))**(1/2)
print('Downside Deviation:', downsideDeviation)
return downsideDeviation
def calcKurtosis(self):
numberOfValues = self.timeFrame
mean = self.averageAnnualReturn
kurtosis = (sum((self.annualReturn[x]-mean)**4 for x in range(
0, numberOfValues, 1)))/((numberOfValues-1)*(self.standardDeviation ** 4))
print('Kurtosis:', kurtosis)
return kurtosis
def calcSkewness(self):
numberOfValues = self.timeFrame
mean = self.averageAnnualReturn
skewness = (sum((self.annualReturn[x]-mean)**3 for x in range(
0, numberOfValues, 1)))/((numberOfValues-1)*(self.standardDeviation ** 3))
print('Skewness:', skewness)
return skewness
def calcBeta(self):
beta = self.correlation * \
(self.standardDeviation/Stock.benchmarkStandardDeviation)
2019-01-31 13:22:02 -08:00
print('Beta:', beta)
return beta
2019-02-14 12:17:22 -08:00
def calcAlpha(self):
alpha = self.averageAnnualReturn - \
(Stock.riskFreeRate+((Stock.benchmarkAverageAnnualReturn -
Stock.riskFreeRate) * self.beta))
print('Alpha:', alpha)
return alpha
def calcSharpe(self):
sharpe = (self.averageAnnualReturn - Stock.riskFreeRate) / \
self.standardDeviation
print('Sharpe Ratio:', sharpe)
return sharpe
def calcSortino(self):
sortino = (self.averageAnnualReturn - self.riskFreeRate) / \
self.downsideDeviation
print('Sortino Ratio:', sortino)
return sortino
def calcTreynor(self):
treynor = (self.averageAnnualReturn - Stock.riskFreeRate)/self.beta
print('Treynor Ratio:', treynor)
return treynor
def calcLinearRegression(self):
dates = self.dates
y = self.closeValues
# First change dates to integers (days from first date)
x = datesToDays(dates)
x = np.array(x)
y = np.array(y)
# Estimate coefficients
# number of observations/points
n = np.size(x)
# mean of x and y vector
m_x, m_y = np.mean(x), np.mean(y)
# calculating cross-deviation and deviation about x
SS_xy = np.sum(y*x) - n*m_y*m_x
SS_xx = np.sum(x*x) - n*m_x*m_x
# calculating regression coefficients
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1*m_x
b = [b_0, b_1]
formula = ''.join(
('y = ', str(round(float(b[0]), 2)), 'x + ', str(round(float(b[1]), 2))))
print('Linear regression formula:', formula)
# Stock.plot_regression_line(self, x, y, b)
regression = []
regression.append(b[0])
regression.append(b[1])
return regression
def plot_regression_line(self, x, y, b):
# plotting the actual points as scatter plot
plt.scatter(self.dates, y, color="m",
marker="o", s=30)
# predicted response vector
y_pred = b[0] + b[1]*x
# plotting the regression line
plt.plot(self.dates, y_pred, color="g")
# putting labels
plt.title(self.name)
plt.xlabel('Dates')
plt.ylabel('Close Values')
# function to show plot
plt.show(block=False)
for i in range(3, 0, -1):
if i == 1:
sys.stdout.write('Keeping plot open for ' +
str(i) + ' second \r')
else:
sys.stdout.write('Keeping plot open for ' +
str(i) + ' seconds \r')
plt.pause(1)
sys.stdout.flush()
plt.close()
def datesToDays(dates):
days = []
firstDate = dates[0]
days.append(0)
for i in range(1, len(dates), 1):
# Calculate days from first date to current date
daysDiff = (dates[i]-firstDate).days
days.append(daysDiff)
return days
2019-01-31 13:22:02 -08:00
def isConnected():
import socket # To check internet connection
2019-02-14 12:17:22 -08:00
print('Checking internet connection')
2019-01-31 13:22:02 -08:00
try:
# connect to the host -- tells us if the host is actually reachable
socket.create_connection(("www.andrewkdinh.com", 80))
print('Internet connection is good!')
return True
except OSError:
# pass
print("No internet connection!")
return False
def checkPackages():
import importlib.util
import sys
packagesInstalled = True
packages = ['requests', 'numpy']
for i in range(0, len(packages), 1):
package_name = packages[i]
spec = importlib.util.find_spec(package_name)
if spec is None:
print(
package_name +
" is not installed\nPlease type in 'pip install -r requirements.txt' to install all required packages")
packagesInstalled = False
return packagesInstalled
def benchmarkInit():
# Treat benchmark like stock
benchmarkTicker = ''
while benchmarkTicker == '':
benchmarks = ['S&P500', 'DJIA', 'Russell 3000', 'MSCI EAFE']
benchmarksTicker = ['SPY', 'DJIA', 'VTHR', 'EFT']
2019-02-14 12:17:22 -08:00
print('\nList of benchmarks:')
for i in range(0, len(benchmarks), 1):
print(str(i+1) + '. ' +
benchmarks[i] + ' (' + benchmarksTicker[i] + ')')
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
benchmark = str(input('Please choose a benchmark from the list: '))
# benchmark = 'SPY' # TESTING
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
if Functions.stringIsInt(benchmark) == True:
if int(benchmark) <= len(benchmarks):
benchmarkInt = int(benchmark)
benchmark = benchmarks[benchmarkInt-1]
benchmarkTicker = benchmarksTicker[benchmarkInt-1]
else:
for i in range(0, len(benchmarks), 1):
if benchmark == benchmarks[i]:
benchmarkTicker = benchmarksTicker[i]
break
if benchmark == benchmarksTicker[i] or benchmark == benchmarksTicker[i].lower():
benchmark = benchmarks[i]
benchmarkTicker = benchmarksTicker[i]
break
2019-01-31 13:22:02 -08:00
if benchmarkTicker == '':
2019-02-14 12:17:22 -08:00
print('Benchmark not found. Please use a benchmark from the list')
2019-01-31 13:22:02 -08:00
print(benchmark, ' (', benchmarkTicker, ')', sep='')
benchmark = Stock()
benchmark.setName(benchmarkTicker)
return benchmark
def stocksInit():
listOfStocks = []
2019-02-14 12:17:22 -08:00
isInteger = False
while isInteger == False:
temp = input('\nNumber of stocks to analyze (2 minimum): ')
isInteger = Functions.stringIsInt(temp)
if isInteger == True:
numberOfStocks = int(temp)
else:
print('Please type an integer')
# numberOfStocks = 5 # TESTING
# print('How many stocks would you like to analyze? ', numberOfStocks)
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
print('\nThis program can analyze stocks (GOOGL), mutual funds (VFINX), and ETFs (SPY)')
print('For simplicity, all of them will be referred to as "stock"\n')
# listOfGenericStocks = ['googl', 'aapl', 'vfinx', 'tsla', 'vthr']
2019-01-31 13:22:02 -08:00
for i in range(0, numberOfStocks, 1):
2019-02-14 12:17:22 -08:00
print('Stock', i + 1, end=' ')
stockName = str(input('ticker: '))
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
# stockName = listOfGenericStocks[i]
# print(':', stockName)
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
stockName = stockName.upper()
2019-01-31 13:22:02 -08:00
listOfStocks.append(stockName)
listOfStocks[i] = Stock()
listOfStocks[i].setName(stockName)
return listOfStocks
def timeFrameInit():
2019-02-14 12:17:22 -08:00
isInteger = False
while isInteger == False:
print(
'\nPlease enter the time frame in years (10 years or less recommended):', end='')
temp = input(' ')
isInteger = Functions.stringIsInt(temp)
if isInteger == True:
years = int(temp)
else:
print('Please type an integer')
# years = 5 # TESTING
# print('Years:', years)
timeFrame = years
2019-01-31 13:22:02 -08:00
return timeFrame
def dataMain(listOfStocks):
print('\nGathering dates and close values')
2019-02-14 12:17:22 -08:00
i = 0
while i < len(listOfStocks):
2019-01-31 13:22:02 -08:00
datesAndCloseList = Stock.datesAndClose(listOfStocks[i])
2019-02-14 12:17:22 -08:00
if datesAndCloseList == 'Not available':
del listOfStocks[i]
if len(listOfStocks) == 0:
print('No stocks to analyze. Ending program')
exit()
else:
listOfStocks[i].allDates = datesAndCloseList[0]
listOfStocks[i].allCloseValues = datesAndCloseList[1]
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
# Clip list to fit time frame
datesAndCloseList2 = Stock.datesAndCloseFitTimeFrame(
listOfStocks[i])
listOfStocks[i].dates = datesAndCloseList2[0]
listOfStocks[i].closeValues = datesAndCloseList2[1]
i += 1
def riskFreeRate():
print('Quandl')
url = ''.join(
('https://www.quandl.com/api/v3/datasets/USTREASURY/LONGTERMRATES.json?api_key=', apiQuandl))
# https://www.quandl.com/api/v3/datasets/USTREASURY/LONGTERMRATES.json?api_key=KUh3U3hxke9tCimjhWEF
print("\nSending request to:", url)
f = requests.get(url)
Functions.fromCache(f)
json_data = f.text
loaded_json = json.loads(json_data)
riskFreeRate = (loaded_json['dataset']['data'][0][1])/100
riskFreeRate = riskFreeRate * 100
riskFreeRate = round(riskFreeRate, 2)
print('Risk-free rate:', riskFreeRate, end='\n\n')
if f.status_code == 404:
print("Quandl not available")
print('Returning 2.50 as risk-free rate', end='\n\n')
# return 0.0250
return 2.50
return riskFreeRate
2019-01-31 13:22:02 -08:00
def returnMain(benchmark, listOfStocks):
print('\nCalculating unadjusted return, Sharpe ratio, Sortino ratio, and Treynor ratio\n')
2019-02-14 12:17:22 -08:00
print('Getting risk-free rate from current 10-year treasury bill rates', end='\n\n')
Stock.riskFreeRate = riskFreeRate()
print(benchmark.name, end='\n\n')
benchmark.annualReturn = Stock.calcAnnualReturn(benchmark)
if benchmark.annualReturn == 'Not available':
print('Please use a lower time frame\nEnding program')
exit()
benchmark.averageAnnualReturn = Stock.calcAverageAnnualReturn(benchmark)
benchmark.standardDeviation = Stock.calcStandardDeviation(benchmark)
2019-01-31 13:22:02 -08:00
# Make benchmark data global
Stock.benchmarkDates = benchmark.dates
Stock.benchmarkCloseValues = benchmark.closeValues
2019-02-14 12:17:22 -08:00
Stock.benchmarkAverageAnnualReturn = benchmark.averageAnnualReturn
Stock.benchmarkStandardDeviation = benchmark.standardDeviation
2019-01-31 13:22:02 -08:00
2019-02-14 12:17:22 -08:00
i = 0
while i < len(listOfStocks):
print('\n' + listOfStocks[i].name, end='\n\n')
2019-01-31 13:22:02 -08:00
# Make sure each date has a value for both the benchmark and the stock
list1 = []
list2 = []
list1.append(listOfStocks[i].dates)
list1.append(listOfStocks[i].closeValues)
list2.append(Stock.benchmarkDates)
list2.append(Stock.benchmarkCloseValues)
temp = Functions.removeExtraDatesAndCloseValues(list1, list2)
listOfStocks[i].datesMatchBenchmark = temp[0][0]
listOfStocks[i].closeValuesMatchBenchmark = temp[0][1]
benchmarkMatchDatesAndCloseValues = temp[1]
2019-02-14 12:17:22 -08:00
# Calculate everything for each stock
listOfStocks[i].annualReturn = Stock.calcAnnualReturn(listOfStocks[i])
if listOfStocks[i].annualReturn == 'Not available':
print('Removing', listOfStocks[i].name, 'from list of stocks')
del listOfStocks[i]
if len(listOfStocks) == 0:
print('No stocks to analyze. Ending program')
exit()
else:
listOfStocks[i].averageAnnualReturn = Stock.calcAverageAnnualReturn(
listOfStocks[i])
listOfStocks[i].correlation = Stock.calcCorrelation(
listOfStocks[i], benchmarkMatchDatesAndCloseValues[1])
listOfStocks[i].standardDeviation = Stock.calcStandardDeviation(
listOfStocks[i])
listOfStocks[i].downsideDeviation = Stock.calcDownsideDeviation(
listOfStocks[i])
listOfStocks[i].kurtosis = Stock.calcKurtosis(
listOfStocks[i])
listOfStocks[i].skewness = Stock.calcSkewness(
listOfStocks[i])
listOfStocks[i].beta = Stock.calcBeta(listOfStocks[i])
listOfStocks[i].alpha = Stock.calcAlpha(listOfStocks[i])
listOfStocks[i].sharpe = Stock.calcSharpe(listOfStocks[i])
listOfStocks[i].sortino = Stock.calcSortino(listOfStocks[i])
listOfStocks[i].treynor = Stock.calcTreynor(listOfStocks[i])
listOfStocks[i].linearRegression = Stock.calcLinearRegression(
listOfStocks[i])
i += 1
print('\nNumber of stocks from original list that fit time frame:',
len(listOfStocks))
def indicatorInit():
# Runs correlation or regression study
indicatorFound = False
listOfIndicators = ['Expense Ratio',
'Market Capitalization', 'Turnover', 'Persistence']
print('\n', end='')
while indicatorFound == False:
print('List of indicators:')
for i in range(0, len(listOfIndicators), 1):
print(str(i + 1) + '. ' + listOfIndicators[i])
indicator = str(input('Choose an indicator from the list: '))
# indicator = 'expense ratio' # TESTING
if Functions.stringIsInt(indicator) == True:
if int(indicator) <= 4:
indicator = listOfIndicators[int(indicator)-1]
indicatorFound = True
else:
indicatorFormats = [
indicator.upper(), indicator.lower(), indicator.title()]
for i in range(0, len(indicatorFormats), 1):
for j in range(0, len(listOfIndicators), 1):
if listOfIndicators[j] == indicatorFormats[i]:
indicator = listOfIndicators[j]
indicatorFound = True
break
if indicatorFound == False:
print('Please choose an indicator from the list')
return indicator
def calcIndicatorCorrelation(listOfIndicatorValues, listOfReturns):
correlationList = []
for i in range(0, len(listOfReturns), 1):
correlation = np.corrcoef(
listOfIndicatorValues, listOfReturns[i])[0, 1]
correlationList.append(correlation)
return correlationList
def calcIndicatorRegression(listOfIndicatorValues, listOfReturns):
regressionList = []
x = np.array(listOfIndicatorValues)
for i in range(0, len(listOfReturns), 1):
y = np.array(listOfReturns[i])
# Estimate coefficients
# number of observations/points
n = np.size(x)
# mean of x and y vector
m_x, m_y = np.mean(x), np.mean(y)
# calculating cross-deviation and deviation about x
SS_xy = np.sum(y*x) - n*m_y*m_x
SS_xx = np.sum(x*x) - n*m_x*m_x
# calculating regression coefficients
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1*m_x
b = [b_0, b_1]
regression = []
regression.append(b[0])
regression.append(b[1])
regressionList.append(regression)
# plot_regression_line(x, y, b, i)
return regressionList
def plot_regression_line(x, y, b, i):
# plotting the actual points as scatter plot
plt.scatter(x, y, color="m",
marker="o", s=30)
# predicted response vector
y_pred = b[0] + b[1]*x
# plotting the regression line
plt.plot(x, y_pred, color="g")
# putting labels
listOfReturnStrings = ['Average Annual Return',
'Sharpe Ratio', 'Sortino Ratio', 'Treynor Ratio', 'Alpha']
plt.title(Stock.indicator + ' and ' + listOfReturnStrings[i])
if Stock.indicator == 'Expense Ratio':
plt.xlabel(Stock.indicator + ' (%)')
else:
plt.xlabel(Stock.indicator)
if i == 0:
plt.ylabel(listOfReturnStrings[i] + ' (%)')
else:
plt.ylabel(listOfReturnStrings[i])
# function to show plot
plt.show(block=False)
for i in range(2, 0, -1):
if i == 1:
sys.stdout.write('Keeping plot open for ' +
str(i) + ' second \r')
else:
sys.stdout.write('Keeping plot open for ' +
str(i) + ' seconds \r')
plt.pause(1)
sys.stdout.flush()
sys.stdout.write(
' \r')
sys.stdout.flush()
plt.close()
def indicatorMain(listOfStocks):
Stock.indicator = indicatorInit()
print(Stock.indicator, end='\n\n')
# indicatorValuesGenericExpenseRatio = [2.5, 4.3, 3.1, 2.6, 4.2] # TESTING
listOfStocksIndicatorValues = []
for i in range(0, len(listOfStocks), 1):
indicatorValueFound = False
while indicatorValueFound == False:
if Stock.indicator == 'Expense Ratio':
indicatorValue = str(
input(Stock.indicator + ' for ' + listOfStocks[i].name + ' (%): '))
elif Stock.indicator == 'Persistence':
indicatorValue = str(
input(Stock.indicator + ' for ' + listOfStocks[i].name + ' (years): '))
elif Stock.indicator == 'Turnover':
indicatorValue = str(input(
Stock.indicator + ' for ' + listOfStocks[i].name + ' in the last ' + str(Stock.timeFrame) + ' years: '))
elif Stock.indicator == 'Market Capitalization':
indicatorValue = str(
input(Stock.indicator + ' of ' + listOfStocks[i].name + ': '))
else:
print('Something is wrong. Indicator was not found. Ending program.')
exit()
if Functions.strintIsFloat(indicatorValue) == True:
listOfStocks[i].indicatorValue = float(indicatorValue)
indicatorValueFound = True
else:
print('Please enter a number')
# listOfStocks[i].indicatorValue = indicatorValuesGenericExpenseRatio[i] # TESTING
listOfStocksIndicatorValues.append(listOfStocks[i].indicatorValue)
listOfReturns = [] # A list that matches the above list with return values [[averageAnnualReturn1, aAR2, aAR3], [sharpe1, sharpe2, sharpe3], etc.]
tempListOfReturns = []
for i in range(0, len(listOfStocks), 1):
tempListOfReturns.append(listOfStocks[i].averageAnnualReturn)
listOfReturns.append(tempListOfReturns)
tempListOfReturns = []
for i in range(0, len(listOfStocks), 1):
tempListOfReturns.append(listOfStocks[i].sharpe)
listOfReturns.append(tempListOfReturns)
tempListOfReturns = []
for i in range(0, len(listOfStocks), 1):
tempListOfReturns.append(listOfStocks[i].sortino)
listOfReturns.append(tempListOfReturns)
tempListOfReturns = []
for i in range(0, len(listOfStocks), 1):
tempListOfReturns.append(listOfStocks[i].treynor)
listOfReturns.append(tempListOfReturns)
tempListOfReturns = []
for i in range(0, len(listOfStocks), 1):
tempListOfReturns.append(listOfStocks[i].alpha)
listOfReturns.append(tempListOfReturns)
# Create list of each indicator (e.g. expense ratio)
listOfIndicatorValues = []
for i in range(0, len(listOfStocks), 1):
listOfIndicatorValues.append(listOfStocks[i].indicatorValue)
Stock.indicatorCorrelation = calcIndicatorCorrelation(
listOfIndicatorValues, listOfReturns)
listOfReturnStrings = ['Average Annual Return',
'Sharpe Ratio', 'Sortino Ratio', 'Treynor Ratio', 'Alpha']
print('\n', end='')
for i in range(0, len(Stock.indicatorCorrelation), 1):
print('Correlation with ' + Stock.indicator.lower() + ' and ' +
listOfReturnStrings[i].lower() + ': ' + str(Stock.indicatorCorrelation[i]))
Stock.indicatorRegression = calcIndicatorRegression(
listOfIndicatorValues, listOfReturns)
print('\n', end='')
for i in range(0, len(Stock.indicatorCorrelation), 1):
formula = ''.join(
('y = ', str(round(float(Stock.indicatorRegression[i][0]), 2)), 'x + ', str(round(float(Stock.indicatorRegression[i][1]), 2))))
print('Linear regression equation for ' + Stock.indicator.lower() + ' and ' +
listOfReturnStrings[i].lower() + ': ' + formula)
2019-01-31 13:22:02 -08:00
def main():
# Test internet connection
internetConnection = isConnected()
if not internetConnection:
return
# Check that all required packages are installed
packagesInstalled = checkPackages()
if not packagesInstalled:
return
# Choose benchmark and makes it class Stock
benchmark = benchmarkInit()
# Add it to a list to work with other functions
benchmarkAsList = []
benchmarkAsList.append(benchmark)
# Asks for stock(s) ticker and makes them class Stock
listOfStocks = stocksInit()
# Determine time frame [Years, Months]
timeFrame = timeFrameInit()
Stock.timeFrame = timeFrame # Needs to be a global variable for all stocks
# Gather data for benchmark and stock(s)
dataMain(benchmarkAsList)
dataMain(listOfStocks)
# Calculate return for benchmark and stock(s)
returnMain(benchmark, listOfStocks)
2019-02-14 12:17:22 -08:00
# Choose indicator and calculate correlation with indicator
indicatorMain(listOfStocks)
2019-01-31 13:22:02 -08:00
2019-01-16 08:54:06 -08:00
exit()
2018-12-31 16:37:51 -08:00
2019-02-14 12:17:22 -08:00
if __name__ == "__main__":
main()