mirror of
https://github.com/andrewkdinh/fund-indicators.git
synced 2024-11-21 09:54:18 -08:00
General fixes
Added color, config file, moved packages into ./modules
This commit is contained in:
parent
6366453f63
commit
5d1f96c403
2
.gitignore
vendored
2
.gitignore
vendored
@ -3,4 +3,4 @@ test/
|
||||
.vscode/
|
||||
*.sqlite
|
||||
README.html
|
||||
*stocks.txt
|
||||
*-stocks.txt
|
59
Functions.py
59
Functions.py
@ -1,5 +1,8 @@
|
||||
# Python file for general functions
|
||||
|
||||
import sys
|
||||
sys.path.insert(0, './modules')
|
||||
|
||||
def getNearest(items, pivot):
|
||||
return min(items, key=lambda x: abs(x - pivot))
|
||||
|
||||
@ -52,14 +55,18 @@ def strintIsFloat(s):
|
||||
|
||||
def fromCache(r):
|
||||
import requests_cache
|
||||
from termcolor import colored, cprint
|
||||
if r.from_cache == True:
|
||||
print('(Response taken from cache)')
|
||||
cprint('(Response taken from cache)', 'white', attrs=['dark'])
|
||||
return
|
||||
|
||||
|
||||
def getJoke():
|
||||
import requests
|
||||
import sys
|
||||
from termcolor import colored, cprint
|
||||
import requests_cache
|
||||
from halo import Halo
|
||||
with requests_cache.disabled():
|
||||
'''
|
||||
f = requests.get('https://official-joke-api.appspot.com/jokes/random').json()
|
||||
@ -69,9 +76,13 @@ def getJoke():
|
||||
'''
|
||||
headers = {'Accept': 'application/json',
|
||||
'User-Agent': 'fund-indicators (https://github.com/andrewkdinh/fund-indicators)'}
|
||||
url = 'https://icanhazdadjoke.com'
|
||||
|
||||
cprint('Get: ' + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
f = requests.get('https://icanhazdadjoke.com/', headers=headers).json()
|
||||
print('')
|
||||
print(f['joke'])
|
||||
print(colored(f['joke'], 'green'))
|
||||
|
||||
|
||||
def hasNumbers(inputString):
|
||||
@ -127,6 +138,50 @@ def fileExists(file):
|
||||
import os.path
|
||||
return os.path.exists(file)
|
||||
|
||||
def listIndexExists(i):
|
||||
try:
|
||||
i
|
||||
return True
|
||||
except IndexError:
|
||||
return False
|
||||
|
||||
def removeOutliers(i):
|
||||
import statistics
|
||||
m = statistics.median(i)
|
||||
firstQ = []
|
||||
thirdQ = []
|
||||
for x in i:
|
||||
if x < m:
|
||||
firstQ.append(x)
|
||||
elif x > m:
|
||||
thirdQ.append(x)
|
||||
firstQm = statistics.median(firstQ)
|
||||
thirdQm = statistics.median(thirdQ)
|
||||
iqr = (thirdQm - firstQm) * 1.5
|
||||
|
||||
goodList = []
|
||||
badList = []
|
||||
for x in i:
|
||||
if x < (thirdQm + iqr) and x > (firstQm - iqr):
|
||||
goodList.append(x)
|
||||
else:
|
||||
badList.append(x) # In case I want to know. If not, then I just make it equal to returnlist[0]
|
||||
returnList = [goodList, badList, firstQm, m, thirdQm, iqr]
|
||||
return returnList
|
||||
|
||||
def validateJson(text):
|
||||
import json
|
||||
try:
|
||||
json.loads(text)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
def keyInDict(dict, key):
|
||||
if key in dict:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def main():
|
||||
exit()
|
||||
|
40
README.md
40
README.md
@ -1,25 +1,45 @@
|
||||
# Mutual Fund Indicators
|
||||
# fund-indicators
|
||||
|
||||
[![License](https://img.shields.io/github/license/andrewkdinh/fund-indicators.svg)](https://raw.githubusercontent.com/andrewkdinh/fund-indicators/master/LICENSE)
|
||||
![](https://img.shields.io/github/last-commit/andrewkdinh/fund-indicators.svg)
|
||||
[![](https://img.shields.io/github/last-commit/andrewkdinh/fund-indicators.svg)](https://github.com/andrewkdinh/fund-indicators/commits/master)
|
||||
![](https://img.shields.io/github/languages/top/andrewkdinh/fund-indicators.svg)
|
||||
![](https://img.shields.io/github/languages/code-size/andrewkdinh/fund-indicators.svg)
|
||||
|
||||
A project to determine indicators of overperforming mutual funds.
|
||||
A project to determine relationships between mutual funds and different factors.
|
||||
|
||||
Examine correlation between performance and market capitalization, persistence, turnover, and expense ratios.
|
||||
Calculates relationships between: Previous performance, Alpha, Sharpe Ratio, Sortino Ratio
|
||||
|
||||
## Prerequisites
|
||||
and Expense ratios, Turnover, Market Capitalization (Asset Size), Persistence
|
||||
|
||||
`$ pip install -r requirements.txt`
|
||||
Give it a try at [repl.run](https://fund-indicators.andrewkdinh.repl.run) or [repl.it](https://repl.it/@andrewkdinh/fund-indicators)
|
||||
|
||||
## Key Features
|
||||
|
||||
- 100% automated
|
||||
- Uses multiple API's in case another fails
|
||||
- Caches http requests for future runs
|
||||
- Scrapes data from Yahoo Finance
|
||||
- Color-coded for easy viewing
|
||||
- Optional graphs to easily visualize linear regression results
|
||||
- A new joke every time it runs
|
||||
|
||||
## Quickstart
|
||||
|
||||
To begin, run
|
||||
```shell
|
||||
pip install -r requirements.txt
|
||||
python main.py
|
||||
```
|
||||
|
||||
`$ python main.py`
|
||||
Pre-chosen stocks listed in `stocks.txt`
|
||||
|
||||
Some ticker values to try:
|
||||
SPY, VFINX, VTHR, DJIA
|
||||
## Credits
|
||||
|
||||
This project uses a wide variety of open-source projects
|
||||
|
||||
- [NumPy](https://github.com/numpy/numpy), [Termcolor](https://github.com/hfeeki/termcolor), [Beautiful Soup](https://launchpad.net/beautifulsoup), [yahoofinancials](https://github.com/JECSand/yahoofinancials), [requests-cache](https://github.com/reclosedev/requests-cache), [halo](https://github.com/manrajgrover/halo)
|
||||
|
||||
And thank you to those that have helped me with the idea and product:
|
||||
|
||||
- Amber Bruce, [Alex Stoykov](http://stoykov.us/), Doug Achterman, [Stack Overflow](https://stackoverflow.com)
|
||||
|
||||
Created by Andrew Dinh from Dr. TJ Owens Gilroy Early College Academy
|
||||
|
63
config.example.json
Normal file
63
config.example.json
Normal file
@ -0,0 +1,63 @@
|
||||
{
|
||||
"_comment": "Only use this if everything you know is correct",
|
||||
"Config": {
|
||||
"Check Packages": true,
|
||||
"Check Python Version": true,
|
||||
"Check Internet Connection": false,
|
||||
"Get Joke": true,
|
||||
"Benchmark": "SPY",
|
||||
"Method": "Kiplinger",
|
||||
"Time Frame": 60,
|
||||
"Indicator": "Expense Ratio",
|
||||
"Remove Outliers": true,
|
||||
"Sources": [
|
||||
"Alpha Vantage",
|
||||
"Yahoo",
|
||||
"IEX",
|
||||
"Tiingo"
|
||||
]
|
||||
},
|
||||
"Possible Values": {
|
||||
"Check Packages": [
|
||||
true,
|
||||
false
|
||||
],
|
||||
"Check Python Version": [
|
||||
true,
|
||||
false
|
||||
],
|
||||
"Check Internet Connection": [
|
||||
true,
|
||||
false
|
||||
],
|
||||
"Get Joke": [
|
||||
true,
|
||||
false
|
||||
],
|
||||
"Benchmark": [
|
||||
"SPY",
|
||||
"DJIA",
|
||||
"VTHR",
|
||||
"EFG"
|
||||
],
|
||||
"Method": [
|
||||
"Read",
|
||||
"Manual",
|
||||
"U.S. News",
|
||||
"Kiplinger",
|
||||
"TheStreet"
|
||||
],
|
||||
"Time Frame": "Any integer",
|
||||
"Indicator": [
|
||||
"Expense Ratio",
|
||||
"Market Capitalization",
|
||||
"Turnover",
|
||||
"Persistence"
|
||||
],
|
||||
"Remove Outliers": [
|
||||
true,
|
||||
false
|
||||
],
|
||||
"Sources": "Choose an order out of ['Alpha Vantage', 'Yahoo', 'IEX', 'Tiingo']"
|
||||
}
|
||||
}
|
493
main.py
493
main.py
@ -3,25 +3,33 @@
|
||||
# Andrew Dinh
|
||||
# Python 3.6.7
|
||||
|
||||
# Required
|
||||
from bs4 import BeautifulSoup
|
||||
import requests
|
||||
import json
|
||||
import datetime
|
||||
# PYTHON FILES
|
||||
import Functions
|
||||
import numpy as np
|
||||
import re
|
||||
from yahoofinancials import YahooFinancials
|
||||
from termcolor import cprint
|
||||
|
||||
# REQUIRED
|
||||
import requests_cache
|
||||
import os.path
|
||||
import re
|
||||
import datetime
|
||||
import json
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
import numpy as np
|
||||
|
||||
# Required for linear regression
|
||||
# OPTIONAL
|
||||
import matplotlib.pyplot as plt
|
||||
import sys
|
||||
from halo import Halo
|
||||
|
||||
# Optional
|
||||
# FOR ASYNC
|
||||
from concurrent.futures import ThreadPoolExecutor as PoolExecutor
|
||||
import time
|
||||
import random
|
||||
import requests_cache
|
||||
|
||||
import sys
|
||||
sys.path.insert(0, './modules')
|
||||
|
||||
requests_cache.install_cache(
|
||||
'cache', backend='sqlite', expire_after=43200) # 12 hours
|
||||
|
||||
@ -59,7 +67,6 @@ API Keys:
|
||||
No: Tiingo
|
||||
'''
|
||||
|
||||
|
||||
class Stock:
|
||||
|
||||
# GLOBAL VARIABLES
|
||||
@ -67,6 +74,11 @@ class Stock:
|
||||
riskFreeRate = 0
|
||||
indicator = ''
|
||||
|
||||
# CONFIG
|
||||
removeOutliers = True
|
||||
sourceList = ['Alpha Vantage', 'Yahoo', 'IEX', 'Tiingo']
|
||||
config = 'N/A'
|
||||
|
||||
# BENCHMARK VALUES
|
||||
benchmarkDates = []
|
||||
benchmarkCloseValues = []
|
||||
@ -100,6 +112,7 @@ class Stock:
|
||||
self.downsideDeviation = 0
|
||||
self.kurtosis = 0
|
||||
self.skewness = 0 # Not sure if I need this
|
||||
self.correlation = 0
|
||||
self.linearRegression = [] # for y=mx+b, this list has [m,b]
|
||||
|
||||
self.indicatorValue = ''
|
||||
@ -117,17 +130,17 @@ class Stock:
|
||||
return self.allCloseValues
|
||||
|
||||
def IEX(self):
|
||||
print('IEX')
|
||||
url = ''.join(
|
||||
('https://api.iextrading.com/1.0/stock/', self.name, '/chart/5y'))
|
||||
# link = "https://api.iextrading.com/1.0/stock/spy/chart/5y"
|
||||
print("\nSending request to:", url)
|
||||
cprint("Get: " + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
f = requests.get(url)
|
||||
Functions.fromCache(f)
|
||||
json_data = f.text
|
||||
if json_data == 'Unknown symbol' or f.status_code != 200:
|
||||
print("IEX not available")
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
loaded_json = json.loads(json_data)
|
||||
listIEX = []
|
||||
|
||||
@ -141,7 +154,7 @@ class Stock:
|
||||
listIEX.append(allDates)
|
||||
print(len(listIEX[0]), "dates")
|
||||
|
||||
print("\nFinding close values for each date")
|
||||
# print("\nFinding close values for each date")
|
||||
values = []
|
||||
for i in range(0, len(loaded_json), 1): # If you want to do oldest first
|
||||
# for i in range(len(loaded_json)-1, -1, -1):
|
||||
@ -149,18 +162,18 @@ class Stock:
|
||||
value = line['close']
|
||||
values.append(value)
|
||||
listIEX.append(values)
|
||||
print(len(listIEX[1]), "close values")
|
||||
|
||||
print(len(listIEX[0]), 'dates and', len(listIEX[1]), "close values")
|
||||
return listIEX
|
||||
|
||||
def AV(self):
|
||||
print('Alpha Vantage')
|
||||
listAV = []
|
||||
url = ''.join(('https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=',
|
||||
self.name, '&outputsize=full&apikey=', apiAV))
|
||||
# https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&outputsize=full&apikey=demo
|
||||
|
||||
print("\nSending request to:", url)
|
||||
cprint("Get: " + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
f = requests.get(url)
|
||||
Functions.fromCache(f)
|
||||
json_data = f.text
|
||||
@ -168,14 +181,14 @@ class Stock:
|
||||
|
||||
if len(loaded_json) == 1 or f.status_code != 200 or len(loaded_json) == 0:
|
||||
print("Alpha Vantage not available")
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
|
||||
dailyTimeSeries = loaded_json['Time Series (Daily)']
|
||||
listOfDates = list(dailyTimeSeries)
|
||||
# listAV.append(listOfDates)
|
||||
listAV.append(list(reversed(listOfDates)))
|
||||
|
||||
print("\nFinding close values for each date")
|
||||
# print("\nFinding close values for each date")
|
||||
values = []
|
||||
for i in range(0, len(listOfDates), 1):
|
||||
temp = listOfDates[i]
|
||||
@ -185,25 +198,25 @@ class Stock:
|
||||
values.append(float(value))
|
||||
# listAV.append(values)
|
||||
listAV.append(list(reversed(values)))
|
||||
print(len(listAV[1]), "close values")
|
||||
print(len(listAV[0]), 'dates and', len(listAV[1]), "close values")
|
||||
|
||||
return listAV
|
||||
|
||||
def Tiingo(self):
|
||||
print('Tiingo')
|
||||
token = ''.join(('Token ', apiTiingo))
|
||||
headers = {
|
||||
'Content-Type': 'application/json',
|
||||
'Authorization': token
|
||||
}
|
||||
url = ''.join(('https://api.tiingo.com/tiingo/daily/', self.name))
|
||||
print("\nSending request to:", url)
|
||||
cprint("Get: " + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
f = requests.get(url, headers=headers)
|
||||
Functions.fromCache(f)
|
||||
loaded_json = f.json()
|
||||
if len(loaded_json) == 1 or f.status_code != 200 or loaded_json['startDate'] == None:
|
||||
print("Tiingo not available")
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
|
||||
listTiingo = []
|
||||
|
||||
@ -218,7 +231,8 @@ class Stock:
|
||||
url2 = ''.join((url, '/prices?startDate=',
|
||||
firstDate, '&endDate=', lastDate))
|
||||
# https://api.tiingo.com/tiingo/daily/<ticker>/prices?startDate=2012-1-1&endDate=2016-1-1
|
||||
print("\nSending request to:", url2, '\n')
|
||||
cprint("\nGet: " + url2 + '\n', 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
requestResponse2 = requests.get(url2, headers=headers)
|
||||
Functions.fromCache(requestResponse2)
|
||||
loaded_json2 = requestResponse2.json()
|
||||
@ -234,38 +248,86 @@ class Stock:
|
||||
listTiingo.append(dates)
|
||||
print(len(listTiingo[0]), "dates")
|
||||
|
||||
print("Finding close values for each date")
|
||||
# print("Finding close values for each date")
|
||||
# Used loop from finding dates
|
||||
listTiingo.append(values)
|
||||
print(len(listTiingo[1]), "close values")
|
||||
|
||||
print(len(listTiingo[0]), 'dates and',
|
||||
len(listTiingo[1]), "close values")
|
||||
return listTiingo
|
||||
|
||||
def datesAndClose(self):
|
||||
print('\n', Stock.getName(self), sep='')
|
||||
def Yahoo(self):
|
||||
url = ''.join(('https://finance.yahoo.com/quote/',
|
||||
self.name, '?p=', self.name))
|
||||
cprint('Get: ' + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
t = requests.get(url)
|
||||
if t.history:
|
||||
print('Yahoo Finance does not have data for', self.name)
|
||||
print('Yahoo not available')
|
||||
return 'N/A'
|
||||
else:
|
||||
print('Yahoo Finance has data for', self.name)
|
||||
|
||||
sourceList = ['AV', 'IEX', 'Tiingo']
|
||||
# sourceList = ['IEX', 'Tiingo', 'AV']
|
||||
ticker = self.name
|
||||
firstDate = datetime.datetime.now().date(
|
||||
) - datetime.timedelta(days=self.timeFrame*31) # 31 days as a buffer just in case
|
||||
with Halo(spinner='dots'):
|
||||
yahoo_financials = YahooFinancials(ticker)
|
||||
r = yahoo_financials.get_historical_price_data(
|
||||
str(firstDate), str(datetime.date.today()), 'daily')
|
||||
|
||||
s = r[self.name]['prices']
|
||||
listOfDates = []
|
||||
listOfCloseValues = []
|
||||
for i in range(0, len(s), 1):
|
||||
listOfDates.append(s[i]['formatted_date'])
|
||||
listOfCloseValues.append(s[i]['close'])
|
||||
listYahoo = [listOfDates, listOfCloseValues]
|
||||
|
||||
# Sometimes close value is a None value
|
||||
i = 0
|
||||
while i < len(listYahoo[1]):
|
||||
if Functions.listIndexExists(listYahoo[1][i]) == True:
|
||||
if listYahoo[1][i] == None:
|
||||
del listYahoo[1][i]
|
||||
del listYahoo[0][i]
|
||||
i = i - 1
|
||||
i = i + 1
|
||||
else:
|
||||
break
|
||||
|
||||
print(len(listYahoo[0]), 'dates and',
|
||||
len(listYahoo[1]), "close values")
|
||||
return listYahoo
|
||||
|
||||
def datesAndClose(self):
|
||||
cprint('\n' + str(self.name), 'cyan')
|
||||
|
||||
sourceList = Stock.sourceList
|
||||
# Use each source until you get a value
|
||||
for j in range(0, len(sourceList), 1):
|
||||
source = sourceList[j]
|
||||
print('\nSource being used:', source)
|
||||
print('Source being used:', source)
|
||||
|
||||
if source == 'AV':
|
||||
if source == 'Alpha Vantage':
|
||||
datesAndCloseList = Stock.AV(self)
|
||||
elif source == 'Tiingo':
|
||||
datesAndCloseList = Stock.Tiingo(self)
|
||||
elif source == 'Yahoo':
|
||||
datesAndCloseList = Stock.Yahoo(self)
|
||||
elif source == 'IEX':
|
||||
datesAndCloseList = Stock.IEX(self)
|
||||
elif source == 'Tiingo':
|
||||
datesAndCloseList = Stock.Tiingo(self)
|
||||
|
||||
if datesAndCloseList != 'Not available':
|
||||
if datesAndCloseList != 'N/A':
|
||||
break
|
||||
else:
|
||||
if j == len(sourceList)-1:
|
||||
print('\nNo sources have data for', self.name)
|
||||
print('Removing', self.name,
|
||||
print('Removing ' + self.name +
|
||||
' from list of stocks to ensure compatibility later')
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
print('')
|
||||
|
||||
# Convert dates to datetime
|
||||
allDates = datesAndCloseList[0]
|
||||
@ -278,14 +340,14 @@ class Stock:
|
||||
for i in datesAndCloseList[1]:
|
||||
if i == 0:
|
||||
print('Found close value of 0. This is likely something like ticker RGN (Daily Time Series with Splits and Dividend Events)')
|
||||
print('Removing', self.name,
|
||||
print('Removing ' + self.name +
|
||||
'from list of stocks to ensure compability later')
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
|
||||
return datesAndCloseList
|
||||
|
||||
def datesAndCloseFitTimeFrame(self):
|
||||
print('Shortening list to fit time frame')
|
||||
print('\nShortening list to fit time frame')
|
||||
# Have to do this because if I just make dates = self.allDates & closeValues = self.allCloseValues, then deleting from dates & closeValues also deletes it from self.allDates & self.allCloseValues (I'm not sure why)
|
||||
dates = []
|
||||
closeValues = []
|
||||
@ -295,7 +357,7 @@ class Stock:
|
||||
|
||||
firstDate = datetime.datetime.now().date() - datetime.timedelta(
|
||||
days=self.timeFrame*30)
|
||||
print('\n', self.timeFrame, ' months ago: ', firstDate, sep='')
|
||||
print(self.timeFrame, ' months ago: ', firstDate, sep='')
|
||||
closestDate = Functions.getNearest(dates, firstDate)
|
||||
if closestDate != firstDate:
|
||||
print('Closest date available for', self.name, ':', closestDate)
|
||||
@ -315,9 +377,7 @@ class Stock:
|
||||
datesAndCloseList2.append(dates)
|
||||
datesAndCloseList2.append(closeValues)
|
||||
|
||||
print(len(dates), 'dates')
|
||||
print(len(closeValues), 'close values')
|
||||
|
||||
print(len(dates), 'dates and', len(closeValues), 'close values')
|
||||
return datesAndCloseList2
|
||||
|
||||
def calcAverageMonthlyReturn(self): # pylint: disable=E0202
|
||||
@ -345,7 +405,7 @@ class Stock:
|
||||
if firstDate == secondDate:
|
||||
print('Closest date is', firstDate,
|
||||
'which is after the given time frame.')
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
|
||||
# Get corresponding close values and calculate monthly return
|
||||
for i in range(0, len(self.dates), 1):
|
||||
@ -499,34 +559,49 @@ class Stock:
|
||||
|
||||
def scrapeYahooFinance(self):
|
||||
# Determine if ETF, Mutual fund, or stock
|
||||
print('Determining if Yahoo Finance has data for', self.name, end=": ")
|
||||
url = ''.join(('https://finance.yahoo.com/quote/',
|
||||
self.name, '?p=', self.name))
|
||||
if requests.get(url).history:
|
||||
print('No')
|
||||
return 'Not available'
|
||||
cprint('Get: ' + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
t = requests.get(url)
|
||||
Functions.fromCache(t)
|
||||
if t.history:
|
||||
print('Yahoo Finance does not have data for', self.name)
|
||||
return 'N/A'
|
||||
else:
|
||||
print('Yes')
|
||||
print('Yahoo Finance has data for', self.name)
|
||||
|
||||
stockType = ''
|
||||
url2 = ''.join(('https://finance.yahoo.com/lookup?s=', self.name))
|
||||
print('Sending request to:', url2)
|
||||
raw_html = requests.get(url2).text
|
||||
cprint('Get: ' + url2, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
x = requests.get(url2)
|
||||
raw_html = x.text
|
||||
Functions.fromCache(x)
|
||||
|
||||
soup2 = BeautifulSoup(raw_html, 'html.parser')
|
||||
# Type (Stock, ETF, Mutual Fund)
|
||||
r = soup2.find_all(
|
||||
'td', attrs={'class': 'data-col4 Ta(start) Pstart(20px) Miw(30px)'})
|
||||
t = soup2.find_all('a', attrs={'class': 'Fw(b)'}) # Name and class
|
||||
u = soup2.find_all('a', attrs={'class': 'Fw(b)'}) # Name and class
|
||||
z = soup2.find_all('td', attrs={
|
||||
'class': 'data-col1 Ta(start) Pstart(10px) Miw(80px)'}) # Name of stock
|
||||
listNames = []
|
||||
for i in t:
|
||||
for i in u:
|
||||
if i.text.strip() == i.text.strip().upper():
|
||||
listNames.append(i.text.strip())
|
||||
'''
|
||||
if len(i.text.strip()) < 6:
|
||||
listNames.append(i.text.strip())
|
||||
elif '.' in i.text.strip():
|
||||
listNames.append(i.text.strip()) # Example: TSNAX (TSN.AX)
|
||||
#! If having problems later, separate them by Industries (Mutual funds and ETF's are always N/A)
|
||||
'''
|
||||
|
||||
for i in range(0, len(listNames), 1):
|
||||
if listNames[i] == self.name:
|
||||
break
|
||||
|
||||
r = r[i].text.strip()
|
||||
z = z[i].text.strip()
|
||||
print('Name:', z)
|
||||
@ -536,36 +611,32 @@ class Stock:
|
||||
elif r == 'Stocks':
|
||||
stockType = 'Stock'
|
||||
elif r == 'Mutual Fund':
|
||||
stockType = 'Fund'
|
||||
stockType = 'Mutual Fund'
|
||||
else:
|
||||
print('Could not determine fund type')
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
print('Type:', stockType)
|
||||
|
||||
if Stock.indicator == 'Expense Ratio':
|
||||
if stockType == 'Stock':
|
||||
print(
|
||||
self.name, 'is a stock, and therefore does not have an expense ratio')
|
||||
return 'Not available'
|
||||
return 'Stock'
|
||||
|
||||
url = ''.join(('https://finance.yahoo.com/quote/',
|
||||
self.name, '?p=', self.name))
|
||||
# https://finance.yahoo.com/quote/SPY?p=SPY
|
||||
print('Sending request to:', url)
|
||||
raw_html = requests.get(url).text
|
||||
raw_html = t.text
|
||||
soup = BeautifulSoup(raw_html, 'html.parser')
|
||||
|
||||
r = soup.find_all('span', attrs={'class': 'Trsdu(0.3s)'})
|
||||
if r == []:
|
||||
print('Something went wrong with scraping expense ratio')
|
||||
return('Not available')
|
||||
return('N/A')
|
||||
|
||||
if stockType == 'ETF':
|
||||
for i in range(len(r)-1, 0, -1):
|
||||
s = r[i].text.strip()
|
||||
if s[-1] == '%':
|
||||
break
|
||||
elif stockType == 'Fund':
|
||||
elif stockType == 'Mutual Fund':
|
||||
count = 0 # Second in set
|
||||
for i in range(0, len(r)-1, 1):
|
||||
s = r[i].text.strip()
|
||||
@ -578,64 +649,78 @@ class Stock:
|
||||
expenseRatio = float(s.replace('%', ''))
|
||||
else:
|
||||
print('Something went wrong with scraping expense ratio')
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
print(Stock.indicator + ': ', end='')
|
||||
print(str(expenseRatio) + '%')
|
||||
return expenseRatio
|
||||
|
||||
elif Stock.indicator == 'Market Capitalization':
|
||||
url = ''.join(('https://finance.yahoo.com/quote/',
|
||||
self.name, '?p=', self.name))
|
||||
# https://finance.yahoo.com/quote/GOOGL?p=GOOGL
|
||||
raw_html = requests.get(url).text
|
||||
somethingWrong = False
|
||||
raw_html = t.text
|
||||
soup = BeautifulSoup(raw_html, 'html.parser')
|
||||
r = soup.find_all(
|
||||
'span', attrs={'class': 'Trsdu(0.3s)'})
|
||||
if r == []:
|
||||
print('Something went wrong with scraping market capitalization')
|
||||
return 'Not available'
|
||||
somethingWrong = True
|
||||
else:
|
||||
marketCap = 0
|
||||
for t in r:
|
||||
s = t.text.strip()
|
||||
if s[-1] == 'B':
|
||||
print(Stock.indicator + ': ', end='')
|
||||
print(s, end='')
|
||||
s = s.replace('B', '')
|
||||
marketCap = float(s) * 1000000000 # 1 billion
|
||||
break
|
||||
elif s[-1] == 'M':
|
||||
print(Stock.indicator + ': ', end='')
|
||||
print(s, end='')
|
||||
s = s.replace('M', '')
|
||||
marketCap = float(s) * 1000000 # 1 million
|
||||
break
|
||||
elif s[-1] == 'K':
|
||||
print(Stock.indicator + ': ', end='')
|
||||
print(s, end='')
|
||||
s = s.replace('K', '')
|
||||
marketCap = float(s) * 1000 # 1 thousand
|
||||
break
|
||||
if marketCap == 0:
|
||||
print('\nSomething went wrong with scraping market capitalization')
|
||||
return 'Not available'
|
||||
somethingWrong = True
|
||||
if somethingWrong == True:
|
||||
ticker = self.name
|
||||
yahoo_financials = YahooFinancials(ticker)
|
||||
marketCap = yahoo_financials.get_market_cap()
|
||||
if marketCap != None:
|
||||
print('(Taken from yahoofinancials)')
|
||||
print(marketCap)
|
||||
return int(marketCap)
|
||||
else:
|
||||
print(
|
||||
'Was not able to scrape or get market capitalization from yahoo finance')
|
||||
return 'N/A'
|
||||
marketCap = int(marketCap)
|
||||
return marketCap
|
||||
|
||||
print(' =', marketCap)
|
||||
marketCap = marketCap / 1000000
|
||||
print(
|
||||
'Dividing marketCap by 1 million (to work with linear regression module):', marketCap)
|
||||
return marketCap
|
||||
|
||||
elif Stock.indicator == 'Turnover':
|
||||
if stockType == 'Stock':
|
||||
print(self.name, 'is a stock, and therefore does not have turnover')
|
||||
return 'Not available'
|
||||
return 'Stock'
|
||||
|
||||
if stockType == 'Fund':
|
||||
url = ''.join(('https://finance.yahoo.com/quote/',
|
||||
self.name, '?p=', self.name))
|
||||
# https://finance.yahoo.com/quote/SPY?p=SPY
|
||||
print('Sending request to', url)
|
||||
raw_html = requests.get(url).text
|
||||
if stockType == 'Mutual Fund':
|
||||
raw_html = t.text
|
||||
soup = BeautifulSoup(raw_html, 'html.parser')
|
||||
|
||||
r = soup.find_all(
|
||||
'span', attrs={'class': 'Trsdu(0.3s)'})
|
||||
if r == []:
|
||||
print('Something went wrong without scraping turnover')
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
turnover = 0
|
||||
for i in range(len(r)-1, 0, -1):
|
||||
s = r[i].text.strip()
|
||||
@ -646,7 +731,8 @@ class Stock:
|
||||
url = ''.join(('https://finance.yahoo.com/quote/',
|
||||
self.name, '/profile?p=', self.name))
|
||||
# https://finance.yahoo.com/quote/SPY/profile?p=SPY
|
||||
print('Sending request to', url)
|
||||
cprint('Get: ' + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
raw_html = requests.get(url).text
|
||||
soup = BeautifulSoup(raw_html, 'html.parser')
|
||||
|
||||
@ -654,17 +740,21 @@ class Stock:
|
||||
'span', attrs={'class': 'W(20%) D(b) Fl(start) Ta(e)'})
|
||||
if r == []:
|
||||
print('Something went wrong without scraping turnover')
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
turnover = 0
|
||||
for i in range(len(r)-1, 0, -1):
|
||||
s = r[i].text.strip()
|
||||
if s[-1] == '%':
|
||||
turnover = float(s.replace('%', ''))
|
||||
break
|
||||
elif s == 'N/A':
|
||||
print(self.name, 'has a value of N/A for turnover')
|
||||
return 'N/A'
|
||||
|
||||
if turnover == 0:
|
||||
print('Something went wrong with scraping turnover')
|
||||
return 'Not available'
|
||||
return 'N/A'
|
||||
print(Stock.indicator + ': ', end='')
|
||||
print(str(turnover) + '%')
|
||||
return turnover
|
||||
|
||||
@ -684,7 +774,9 @@ class Stock:
|
||||
indicatorValue = str(
|
||||
input(Stock.indicator + ' of ' + self.name + ': '))
|
||||
else:
|
||||
print('Something is wrong. Indicator was not found. Ending program.')
|
||||
# print('Something is wrong. Indicator was not found. Ending program.')
|
||||
cprint(
|
||||
'Something is wrong. Indicator was not found. Ending program.', 'white', 'on_red')
|
||||
exit()
|
||||
|
||||
if Functions.strintIsFloat(indicatorValue) == True:
|
||||
@ -698,7 +790,7 @@ class Stock:
|
||||
0, Stock.persTimeFrame, 1))) / Stock.persTimeFrame
|
||||
persistenceSecond = self.averageMonthlyReturn
|
||||
persistence = persistenceSecond-persistenceFirst
|
||||
print('Change in average monthly return:', persistence)
|
||||
print('Change (difference) in average monthly return:', persistence)
|
||||
return persistence
|
||||
|
||||
|
||||
@ -765,6 +857,15 @@ def stocksInit():
|
||||
method = 0
|
||||
methods = ['Read from a file', 'Enter manually',
|
||||
'U.S. News popular funds (~35)', 'Kiplinger top-performing funds (50)', 'TheStreet top-rated mutual funds (20)']
|
||||
|
||||
if Stock.config != 'N/A':
|
||||
methodsConfig = ['Read', 'Manual',
|
||||
'U.S. News', 'Kiplinger', 'TheStreet']
|
||||
for i in range(0, len(methodsConfig), 1):
|
||||
if Stock.config['Method'] == methodsConfig[i]:
|
||||
method = i + 1
|
||||
|
||||
else:
|
||||
for i in range(0, len(methods), 1):
|
||||
print(str(i+1) + '. ' + methods[i])
|
||||
while method == 0 or method > len(methods):
|
||||
@ -776,13 +877,13 @@ def stocksInit():
|
||||
else:
|
||||
method = 0
|
||||
print('Please choose a number')
|
||||
print('')
|
||||
|
||||
print('')
|
||||
if method == 1:
|
||||
defaultFiles = ['.gitignore', 'LICENSE', 'main.py', 'Functions.py',
|
||||
'README.md', 'requirements.txt', 'cache.sqlite', '_test_runner.py'] # Added by repl.it for whatever reason
|
||||
'README.md', 'requirements.txt', 'cache.sqlite', 'yahoofinancials.py', 'termcolor.py', 'README.html', 'config.json', '_test_runner.py'] # Added by repl.it for whatever reason
|
||||
stocksFound = False
|
||||
print('Files in current directory (not including default files): ')
|
||||
print('\nFiles in current directory (not including default files): ')
|
||||
listOfFilesTemp = [f for f in os.listdir() if os.path.isfile(f)]
|
||||
listOfFiles = []
|
||||
for files in listOfFilesTemp:
|
||||
@ -851,7 +952,8 @@ def stocksInit():
|
||||
url = 'https://money.usnews.com/funds/mutual-funds/most-popular'
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36'}
|
||||
print('Sending request to', url)
|
||||
cprint('Get: ' + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
f = requests.get(url, headers=headers)
|
||||
Functions.fromCache(f)
|
||||
raw_html = f.text
|
||||
@ -878,7 +980,8 @@ def stocksInit():
|
||||
url = 'https://www.kiplinger.com/tool/investing/T041-S001-top-performing-mutual-funds/index.php'
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}
|
||||
print('Sending request to', url)
|
||||
cprint('Get: ' + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
f = requests.get(url, headers=headers)
|
||||
Functions.fromCache(f)
|
||||
raw_html = f.text
|
||||
@ -904,7 +1007,8 @@ def stocksInit():
|
||||
url = 'https://www.thestreet.com/topic/21421/top-rated-mutual-funds.html'
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}
|
||||
print('Sending request to', url)
|
||||
cprint('Get: ' + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
f = requests.get(url, headers=headers)
|
||||
Functions.fromCache(f)
|
||||
raw_html = f.text
|
||||
@ -977,7 +1081,7 @@ def asyncData(benchmark, listOfStocks):
|
||||
|
||||
def sendAsync(url):
|
||||
time.sleep(random.randrange(0, 2))
|
||||
print('Sending request to', url)
|
||||
cprint('Get: ' + url, 'white', attrs=['dark'])
|
||||
requests.get(url)
|
||||
return
|
||||
|
||||
@ -990,7 +1094,7 @@ def timeFrameInit():
|
||||
temp = input(' ')
|
||||
isInteger = Functions.stringIsInt(temp)
|
||||
if isInteger == True:
|
||||
if int(temp) > 1:
|
||||
if int(temp) > 1 and int(temp) < 1000:
|
||||
months = int(temp)
|
||||
else:
|
||||
print('Please enter a number greater than 1')
|
||||
@ -1003,15 +1107,15 @@ def timeFrameInit():
|
||||
|
||||
|
||||
def dataMain(listOfStocks):
|
||||
print('\nGathering dates and close values')
|
||||
i = 0
|
||||
while i < len(listOfStocks):
|
||||
|
||||
datesAndCloseList = Stock.datesAndClose(listOfStocks[i])
|
||||
if datesAndCloseList == 'Not available':
|
||||
if datesAndCloseList == 'N/A':
|
||||
del listOfStocks[i]
|
||||
if len(listOfStocks) == 0:
|
||||
print('No stocks to analyze. Ending program')
|
||||
# print('No stocks to analyze. Ending program')
|
||||
cprint('No stocks to analyze. Ending program', 'white', 'on_red')
|
||||
exit()
|
||||
else:
|
||||
listOfStocks[i].allDates = datesAndCloseList[0]
|
||||
@ -1032,7 +1136,8 @@ def riskFreeRate():
|
||||
('https://www.quandl.com/api/v3/datasets/USTREASURY/LONGTERMRATES.json?api_key=', apiQuandl))
|
||||
# https://www.quandl.com/api/v3/datasets/USTREASURY/LONGTERMRATES.json?api_key=KUh3U3hxke9tCimjhWEF
|
||||
|
||||
print("\nSending request to:", url)
|
||||
cprint('\nGet: ' + url, 'white', attrs=['dark'])
|
||||
with Halo(spinner='dots'):
|
||||
f = requests.get(url)
|
||||
Functions.fromCache(f)
|
||||
json_data = f.text
|
||||
@ -1043,7 +1148,7 @@ def riskFreeRate():
|
||||
print('Risk-free rate:', riskFreeRate, end='\n\n')
|
||||
|
||||
if f.status_code != 200:
|
||||
print("Quandl not available")
|
||||
print('Quandl not available')
|
||||
print('Returning 2.50 as risk-free rate', end='\n\n')
|
||||
# return 0.0250
|
||||
return 2.50
|
||||
@ -1052,13 +1157,14 @@ def riskFreeRate():
|
||||
|
||||
|
||||
def returnMain(benchmark, listOfStocks):
|
||||
print('\nCalculating unadjusted return, Sharpe ratio, Sortino ratio, and Treynor ratio\n')
|
||||
cprint('\nCalculating return statistics\n', 'white', attrs=['underline'])
|
||||
print('Getting risk-free rate from current 10-year treasury bill rates', end='\n\n')
|
||||
Stock.riskFreeRate = riskFreeRate()
|
||||
print(benchmark.name, end='\n\n')
|
||||
cprint(benchmark.name, 'cyan')
|
||||
benchmark.monthlyReturn = Stock.calcMonthlyReturn(benchmark)
|
||||
if benchmark.monthlyReturn == 'Not available':
|
||||
print('Please use a lower time frame\nEnding program')
|
||||
if benchmark.monthlyReturn == 'N/A':
|
||||
# print('Please use a lower time frame\nEnding program')
|
||||
cprint('Please use a lower time frame. Ending program', 'white', 'on_red')
|
||||
exit()
|
||||
benchmark.averageMonthlyReturn = Stock.calcAverageMonthlyReturn(benchmark)
|
||||
benchmark.standardDeviation = Stock.calcStandardDeviation(benchmark)
|
||||
@ -1071,7 +1177,7 @@ def returnMain(benchmark, listOfStocks):
|
||||
|
||||
i = 0
|
||||
while i < len(listOfStocks):
|
||||
print('\n' + listOfStocks[i].name, end='\n\n')
|
||||
cprint('\n' + listOfStocks[i].name, 'cyan')
|
||||
|
||||
# Make sure each date has a value for both the benchmark and the stock
|
||||
list1 = []
|
||||
@ -1088,11 +1194,13 @@ def returnMain(benchmark, listOfStocks):
|
||||
# Calculate everything for each stock
|
||||
listOfStocks[i].monthlyReturn = Stock.calcMonthlyReturn(
|
||||
listOfStocks[i])
|
||||
if listOfStocks[i].monthlyReturn == 'Not available':
|
||||
print('Removing', listOfStocks[i].name, 'from list of stocks')
|
||||
if listOfStocks[i].monthlyReturn == 'N/A':
|
||||
print('Removing ' + listOfStocks[i].name + ' from list of stocks')
|
||||
del listOfStocks[i]
|
||||
if len(listOfStocks) == 0:
|
||||
print('No stocks fit time frame. Ending program')
|
||||
cprint('No stocks fit time frame. Ending program',
|
||||
'white', 'on_red')
|
||||
exit()
|
||||
else:
|
||||
listOfStocks[i].averageMonthlyReturn = Stock.calcAverageMonthlyReturn(
|
||||
@ -1117,13 +1225,36 @@ def returnMain(benchmark, listOfStocks):
|
||||
|
||||
i += 1
|
||||
|
||||
print('\nNumber of stocks from original list that fit time frame:',
|
||||
len(listOfStocks))
|
||||
cprint('\nNumber of stocks from original list that fit time frame: ' +
|
||||
str(len(listOfStocks)), 'green')
|
||||
if len(listOfStocks) < 2:
|
||||
print('Cannot proceed to the next step. Exiting program.')
|
||||
#print('Cannot proceed to the next step. Exiting program.')
|
||||
cprint('Cannot proceed to the next step. Exiting program.',
|
||||
'white', 'on_red')
|
||||
exit()
|
||||
|
||||
|
||||
def outlierChoice():
|
||||
print('\nWould you like to remove indicator outliers?')
|
||||
print('1. Yes\n2. No')
|
||||
found = False
|
||||
while found == False:
|
||||
outlierChoice = str(input('Choice: '))
|
||||
if Functions.stringIsInt(outlierChoice):
|
||||
if int(outlierChoice) == 1:
|
||||
return True
|
||||
elif int(outlierChoice) == 2:
|
||||
return False
|
||||
else:
|
||||
print('Please enter 1 or 2')
|
||||
elif outlierChoice.lower() == 'yes':
|
||||
return True
|
||||
elif outlierChoice.lower() == 'no':
|
||||
return False
|
||||
else:
|
||||
print('Not valid. Please enter a number or yes or no.')
|
||||
|
||||
|
||||
def indicatorInit():
|
||||
# Runs correlation or regression study
|
||||
indicatorFound = False
|
||||
@ -1220,6 +1351,8 @@ def plot_regression_line(x, y, b, i):
|
||||
plt.xlabel(Stock.indicator + ' (%)')
|
||||
elif Stock.indicator == 'Persistence':
|
||||
plt.xlabel(Stock.indicator + ' (Difference in average monthly return)')
|
||||
elif Stock.indicator == 'Market Capitalization':
|
||||
plt.xlabel(Stock.indicator + ' (millions)')
|
||||
else:
|
||||
plt.xlabel(Stock.indicator)
|
||||
|
||||
@ -1266,25 +1399,61 @@ def persistenceTimeFrame():
|
||||
|
||||
|
||||
def indicatorMain(listOfStocks):
|
||||
print('\n' + str(Stock.indicator) + '\n')
|
||||
cprint('\n' + str(Stock.indicator) + '\n', 'white', attrs=['underline'])
|
||||
|
||||
listOfStocksIndicatorValues = []
|
||||
for i in range(0, len(listOfStocks), 1):
|
||||
print(listOfStocks[i].name)
|
||||
if Stock.indicator != 'Persistence':
|
||||
listOfStocks[i].indicatorValue = Stock.scrapeYahooFinance(
|
||||
cprint(listOfStocks[i].name, 'cyan')
|
||||
if Stock.indicator == 'Persistence':
|
||||
listOfStocks[i].indicatorValue = Stock.calcPersistence(
|
||||
listOfStocks[i])
|
||||
else:
|
||||
listOfStocks[i].indicatorValue = Stock.calcPersistence(
|
||||
listOfStocks[i].indicatorValue = Stock.scrapeYahooFinance(
|
||||
listOfStocks[i])
|
||||
print('')
|
||||
|
||||
if listOfStocks[i].indicatorValue == 'Not available':
|
||||
if listOfStocks[i].indicatorValue == 'N/A':
|
||||
listOfStocks[i].indicatorValue = Stock.indicatorManual(
|
||||
listOfStocks[i])
|
||||
elif listOfStocks[i].indicatorValue == 'Stock':
|
||||
print('Removing ' + listOfStocks[i].name + ' from list of stocks')
|
||||
del listOfStocks[i]
|
||||
if len(listOfStocks) < 2:
|
||||
# print('Not able to go to the next step. Ending program')
|
||||
cprint('Not able to go to the next step. Ending program',
|
||||
'white', 'on_red')
|
||||
exit()
|
||||
|
||||
listOfStocksIndicatorValues.append(listOfStocks[i].indicatorValue)
|
||||
|
||||
# Remove outliers
|
||||
if Stock.removeOutliers == True:
|
||||
cprint('\nRemoving outliers\n', 'white', attrs=['underline'])
|
||||
temp = Functions.removeOutliers(listOfStocksIndicatorValues)
|
||||
if temp[0] == listOfStocksIndicatorValues:
|
||||
print('No outliers\n')
|
||||
else:
|
||||
print('First quartile:', temp[2], ', Median:', temp[3],
|
||||
', Third quartile:', temp[4], 'Interquartile range:', temp[5])
|
||||
# print('Original list:', listOfStocksIndicatorValues)
|
||||
listOfStocksIndicatorValues = temp[0]
|
||||
i = 0
|
||||
while i < len(listOfStocks)-1:
|
||||
for j in temp[1]:
|
||||
if listOfStocks[i].indicatorValue == j:
|
||||
print('Removing', listOfStocks[i].name, 'because it has a',
|
||||
Stock.indicator.lower(), 'value of', listOfStocks[i].indicatorValue)
|
||||
del listOfStocks[i]
|
||||
i = i - 1
|
||||
break
|
||||
i += 1
|
||||
# print('New list:', listOfStocksIndicatorValues, '\n')
|
||||
print('')
|
||||
|
||||
# Calculate data
|
||||
cprint('Calculating correlation and linear regression\n',
|
||||
'white', attrs=['underline'])
|
||||
|
||||
listOfReturns = [] # A list that matches the above list with return values [[averageMonthlyReturn1, aAR2, aAR3], [sharpe1, sharpe2, sharpe3], etc.]
|
||||
tempListOfReturns = []
|
||||
for i in range(0, len(listOfStocks), 1):
|
||||
@ -1318,7 +1487,7 @@ def indicatorMain(listOfStocks):
|
||||
listOfReturnStrings = ['Average Monthly Return',
|
||||
'Sharpe Ratio', 'Sortino Ratio', 'Treynor Ratio', 'Alpha']
|
||||
for i in range(0, len(Stock.indicatorCorrelation), 1):
|
||||
print('Correlation with ' + Stock.indicator.lower() + ' and ' +
|
||||
print('Correlation for ' + Stock.indicator.lower() + ' and ' +
|
||||
listOfReturnStrings[i].lower() + ': ' + str(Stock.indicatorCorrelation[i]))
|
||||
|
||||
Stock.indicatorRegression = calcIndicatorRegression(
|
||||
@ -1331,10 +1500,29 @@ def indicatorMain(listOfStocks):
|
||||
listOfReturnStrings[i].lower() + ': ' + formula)
|
||||
|
||||
|
||||
def checkConfig(fileName):
|
||||
if Functions.fileExists(fileName) == False:
|
||||
return 'N/A'
|
||||
file = open(fileName, 'r')
|
||||
n = file.read()
|
||||
file.close()
|
||||
if Functions.validateJson(n) == False:
|
||||
print('Config file is not valid')
|
||||
return 'N/A'
|
||||
t = json.loads(n)
|
||||
r = t['Config']
|
||||
return r
|
||||
|
||||
|
||||
def main():
|
||||
# Check config file for errors and if not, then use values
|
||||
#! Only use this if you know it is exactly correct. I haven't spent much time debugging this
|
||||
Stock.config = checkConfig('config.json')
|
||||
|
||||
# Check that all required packages are installed
|
||||
if Stock.config == 'N/A':
|
||||
packagesInstalled = Functions.checkPackages(
|
||||
['numpy', 'requests', 'bs4', 'requests_cache'])
|
||||
['numpy', 'requests', 'bs4', 'requests_cache', 'halo'])
|
||||
if not packagesInstalled:
|
||||
exit()
|
||||
else:
|
||||
@ -1343,18 +1531,15 @@ def main():
|
||||
# Check python version is above 3.3
|
||||
pythonVersionGood = Functions.checkPythonVersion()
|
||||
if not pythonVersionGood:
|
||||
return
|
||||
exit()
|
||||
|
||||
# Test internet connection
|
||||
|
||||
internetConnection = Functions.isConnected()
|
||||
if not internetConnection:
|
||||
return
|
||||
exit()
|
||||
else:
|
||||
Functions.getJoke()
|
||||
|
||||
# Functions.getJoke()
|
||||
|
||||
# Choose benchmark and makes it class Stock
|
||||
benchmark = benchmarkInit()
|
||||
# Add it to a list to work with other functions
|
||||
@ -1373,10 +1558,67 @@ def main():
|
||||
if Stock.indicator == 'Persistence':
|
||||
Stock.persTimeFrame = persistenceTimeFrame()
|
||||
|
||||
# Choose whether to remove outliers or not
|
||||
Stock.removeOutliers = outlierChoice()
|
||||
else:
|
||||
if Stock.config['Check Packages'] != False:
|
||||
packagesInstalled = Functions.checkPackages(
|
||||
['numpy', 'requests', 'bs4', 'requests_cache', 'halo'])
|
||||
if not packagesInstalled:
|
||||
exit()
|
||||
else:
|
||||
print('All required packages are installed')
|
||||
|
||||
if Stock.config['Check Python Version'] != False:
|
||||
pythonVersionGood = Functions.checkPythonVersion()
|
||||
if not pythonVersionGood:
|
||||
exit()
|
||||
|
||||
if Stock.config['Check Internet Connection'] != False:
|
||||
internetConnection = Functions.isConnected()
|
||||
if not internetConnection:
|
||||
exit()
|
||||
if Stock.config['Get Joke'] != False:
|
||||
Functions.getJoke()
|
||||
|
||||
benchmarksTicker = ['SPY', 'DJIA', 'VTHR', 'EFT']
|
||||
if Stock.config['Benchmark'] in benchmarksTicker:
|
||||
benchmark = Stock()
|
||||
benchmark.setName(str(Stock.config['Benchmark']))
|
||||
benchmarkAsList = [benchmark]
|
||||
else:
|
||||
benchmark = benchmarkInit()
|
||||
benchmarkAsList = [benchmark]
|
||||
|
||||
listOfStocks = stocksInit()
|
||||
|
||||
if int(Stock.config['Time Frame']) >= 2:
|
||||
timeFrame = int(Stock.config['Time Frame'])
|
||||
else:
|
||||
timeFrame = timeFrameInit()
|
||||
Stock.timeFrame = timeFrame # Needs to be a global variable for all stocks
|
||||
|
||||
indicators = ['Expense Ratio',
|
||||
'Market Capitalization', 'Turnover', 'Persistence']
|
||||
if Stock.config['Indicator'] in indicators:
|
||||
Stock.indicator = Stock.config['Indicator']
|
||||
else:
|
||||
Stock.indicator = indicatorInit()
|
||||
|
||||
if Stock.indicator == 'Persistence':
|
||||
Stock.persTimeFrame = persistenceTimeFrame()
|
||||
|
||||
# Choose whether to remove outliers or not
|
||||
if Stock.config['Remove Outliers'] != False:
|
||||
Stock.removeOutliers = True
|
||||
else:
|
||||
Stock.removeOutliers = outlierChoice()
|
||||
|
||||
# Send async request to AV for listOfStocks and benchmark
|
||||
asyncData(benchmark, listOfStocks)
|
||||
# asyncData(benchmark, listOfStocks)
|
||||
|
||||
# Gather data for benchmark and stock(s)
|
||||
cprint('\nGathering data', 'white', attrs=['underline'])
|
||||
dataMain(benchmarkAsList)
|
||||
dataMain(listOfStocks)
|
||||
|
||||
@ -1386,6 +1628,7 @@ def main():
|
||||
# Choose indicator and calculate correlation with indicator
|
||||
indicatorMain(listOfStocks)
|
||||
|
||||
print('')
|
||||
exit()
|
||||
|
||||
|
||||
|
168
modules/termcolor.py
Normal file
168
modules/termcolor.py
Normal file
@ -0,0 +1,168 @@
|
||||
# coding: utf-8
|
||||
# Copyright (c) 2008-2011 Volvox Development Team
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in
|
||||
# all copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
# THE SOFTWARE.
|
||||
#
|
||||
# Author: Konstantin Lepa <konstantin.lepa@gmail.com>
|
||||
|
||||
"""ANSII Color formatting for output in terminal."""
|
||||
|
||||
from __future__ import print_function
|
||||
import os
|
||||
|
||||
|
||||
__ALL__ = [ 'colored', 'cprint' ]
|
||||
|
||||
VERSION = (1, 1, 0)
|
||||
|
||||
ATTRIBUTES = dict(
|
||||
list(zip([
|
||||
'bold',
|
||||
'dark',
|
||||
'',
|
||||
'underline',
|
||||
'blink',
|
||||
'',
|
||||
'reverse',
|
||||
'concealed'
|
||||
],
|
||||
list(range(1, 9))
|
||||
))
|
||||
)
|
||||
del ATTRIBUTES['']
|
||||
|
||||
|
||||
HIGHLIGHTS = dict(
|
||||
list(zip([
|
||||
'on_grey',
|
||||
'on_red',
|
||||
'on_green',
|
||||
'on_yellow',
|
||||
'on_blue',
|
||||
'on_magenta',
|
||||
'on_cyan',
|
||||
'on_white'
|
||||
],
|
||||
list(range(40, 48))
|
||||
))
|
||||
)
|
||||
|
||||
|
||||
COLORS = dict(
|
||||
list(zip([
|
||||
'grey',
|
||||
'red',
|
||||
'green',
|
||||
'yellow',
|
||||
'blue',
|
||||
'magenta',
|
||||
'cyan',
|
||||
'white',
|
||||
],
|
||||
list(range(30, 38))
|
||||
))
|
||||
)
|
||||
|
||||
|
||||
RESET = '\033[0m'
|
||||
|
||||
|
||||
def colored(text, color=None, on_color=None, attrs=None):
|
||||
"""Colorize text.
|
||||
|
||||
Available text colors:
|
||||
red, green, yellow, blue, magenta, cyan, white.
|
||||
|
||||
Available text highlights:
|
||||
on_red, on_green, on_yellow, on_blue, on_magenta, on_cyan, on_white.
|
||||
|
||||
Available attributes:
|
||||
bold, dark, underline, blink, reverse, concealed.
|
||||
|
||||
Example:
|
||||
colored('Hello, World!', 'red', 'on_grey', ['blue', 'blink'])
|
||||
colored('Hello, World!', 'green')
|
||||
"""
|
||||
if os.getenv('ANSI_COLORS_DISABLED') is None:
|
||||
fmt_str = '\033[%dm%s'
|
||||
if color is not None:
|
||||
text = fmt_str % (COLORS[color], text)
|
||||
|
||||
if on_color is not None:
|
||||
text = fmt_str % (HIGHLIGHTS[on_color], text)
|
||||
|
||||
if attrs is not None:
|
||||
for attr in attrs:
|
||||
text = fmt_str % (ATTRIBUTES[attr], text)
|
||||
|
||||
text += RESET
|
||||
return text
|
||||
|
||||
|
||||
def cprint(text, color=None, on_color=None, attrs=None, **kwargs):
|
||||
"""Print colorize text.
|
||||
|
||||
It accepts arguments of print function.
|
||||
"""
|
||||
|
||||
print((colored(text, color, on_color, attrs)), **kwargs)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('Current terminal type: %s' % os.getenv('TERM'))
|
||||
print('Test basic colors:')
|
||||
cprint('Grey color', 'grey')
|
||||
cprint('Red color', 'red')
|
||||
cprint('Green color', 'green')
|
||||
cprint('Yellow color', 'yellow')
|
||||
cprint('Blue color', 'blue')
|
||||
cprint('Magenta color', 'magenta')
|
||||
cprint('Cyan color', 'cyan')
|
||||
cprint('White color', 'white')
|
||||
print(('-' * 78))
|
||||
|
||||
print('Test highlights:')
|
||||
cprint('On grey color', on_color='on_grey')
|
||||
cprint('On red color', on_color='on_red')
|
||||
cprint('On green color', on_color='on_green')
|
||||
cprint('On yellow color', on_color='on_yellow')
|
||||
cprint('On blue color', on_color='on_blue')
|
||||
cprint('On magenta color', on_color='on_magenta')
|
||||
cprint('On cyan color', on_color='on_cyan')
|
||||
cprint('On white color', color='grey', on_color='on_white')
|
||||
print('-' * 78)
|
||||
|
||||
print('Test attributes:')
|
||||
cprint('Bold grey color', 'grey', attrs=['bold'])
|
||||
cprint('Dark red color', 'red', attrs=['dark'])
|
||||
cprint('Underline green color', 'green', attrs=['underline'])
|
||||
cprint('Blink yellow color', 'yellow', attrs=['blink'])
|
||||
cprint('Reversed blue color', 'blue', attrs=['reverse'])
|
||||
cprint('Concealed Magenta color', 'magenta', attrs=['concealed'])
|
||||
cprint('Bold underline reverse cyan color', 'cyan',
|
||||
attrs=['bold', 'underline', 'reverse'])
|
||||
cprint('Dark blink concealed white color', 'white',
|
||||
attrs=['dark', 'blink', 'concealed'])
|
||||
print(('-' * 78))
|
||||
|
||||
print('Test mixing:')
|
||||
cprint('Underline red on grey color', 'red', 'on_grey',
|
||||
['underline'])
|
||||
cprint('Reversed green on red color', 'green', 'on_red', ['reverse'])
|
||||
|
891
modules/yahoofinancials.py
Normal file
891
modules/yahoofinancials.py
Normal file
@ -0,0 +1,891 @@
|
||||
"""
|
||||
==============================
|
||||
The Yahoo Financials Module
|
||||
Version: 1.5
|
||||
==============================
|
||||
|
||||
Author: Connor Sanders
|
||||
Email: sandersconnor1@gmail.com
|
||||
Version Released: 01/27/2019
|
||||
Tested on Python 2.7, 3.3, 3.4, 3.5, 3.6, and 3.7
|
||||
|
||||
Copyright (c) 2019 Connor Sanders
|
||||
MIT License
|
||||
|
||||
List of Included Functions:
|
||||
|
||||
1) get_financial_stmts(frequency, statement_type, reformat=True)
|
||||
- frequency can be either 'annual' or 'quarterly'.
|
||||
- statement_type can be 'income', 'balance', 'cash'.
|
||||
- reformat optional value defaulted to true. Enter False for unprocessed raw data from Yahoo Finance.
|
||||
2) get_stock_price_data(reformat=True)
|
||||
- reformat optional value defaulted to true. Enter False for unprocessed raw data from Yahoo Finance.
|
||||
3) get_stock_earnings_data(reformat=True)
|
||||
- reformat optional value defaulted to true. Enter False for unprocessed raw data from Yahoo Finance.
|
||||
4) get_summary_data(reformat=True)
|
||||
- reformat optional value defaulted to true. Enter False for unprocessed raw data from Yahoo Finance.
|
||||
5) get_stock_quote_type_data()
|
||||
6) get_historical_price_data(start_date, end_date, time_interval)
|
||||
- Gets historical price data for currencies, stocks, indexes, cryptocurrencies, and commodity futures.
|
||||
- start_date should be entered in the 'YYYY-MM-DD' format. First day that financial data will be pulled.
|
||||
- end_date should be entered in the 'YYYY-MM-DD' format. Last day that financial data will be pulled.
|
||||
- time_interval can be either 'daily', 'weekly', or 'monthly'. Parameter determines the time period interval.
|
||||
|
||||
Usage Examples:
|
||||
from yahoofinancials import YahooFinancials
|
||||
#tickers = 'AAPL'
|
||||
#or
|
||||
tickers = ['AAPL', 'WFC', 'F', 'JPY=X', 'XRP-USD', 'GC=F']
|
||||
yahoo_financials = YahooFinancials(tickers)
|
||||
balance_sheet_data = yahoo_financials.get_financial_stmts('quarterly', 'balance')
|
||||
earnings_data = yahoo_financials.get_stock_earnings_data()
|
||||
historical_prices = yahoo_financials.get_historical_price_data('2015-01-15', '2017-10-15', 'weekly')
|
||||
"""
|
||||
|
||||
import sys
|
||||
import calendar
|
||||
import re
|
||||
from json import loads
|
||||
import time
|
||||
from bs4 import BeautifulSoup
|
||||
import datetime
|
||||
import pytz
|
||||
import random
|
||||
try:
|
||||
from urllib import FancyURLopener
|
||||
except:
|
||||
from urllib.request import FancyURLopener
|
||||
|
||||
|
||||
# track the last get timestamp to add a minimum delay between gets - be nice!
|
||||
_lastget = 0
|
||||
|
||||
|
||||
# Custom Exception class to handle custom error
|
||||
class ManagedException(Exception):
|
||||
pass
|
||||
|
||||
|
||||
# Class used to open urls for financial data
|
||||
class UrlOpener(FancyURLopener):
|
||||
version = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.11) Gecko/20071127 Firefox/2.0.0.11'
|
||||
|
||||
|
||||
# Class containing Yahoo Finance ETL Functionality
|
||||
class YahooFinanceETL(object):
|
||||
|
||||
def __init__(self, ticker):
|
||||
self.ticker = ticker.upper() if isinstance(ticker, str) else [t.upper() for t in ticker]
|
||||
self._cache = {}
|
||||
|
||||
# Minimum interval between Yahoo Finance requests for this instance
|
||||
_MIN_INTERVAL = 7
|
||||
|
||||
# Meta-data dictionaries for the classes to use
|
||||
YAHOO_FINANCIAL_TYPES = {
|
||||
'income': ['financials', 'incomeStatementHistory', 'incomeStatementHistoryQuarterly'],
|
||||
'balance': ['balance-sheet', 'balanceSheetHistory', 'balanceSheetHistoryQuarterly', 'balanceSheetStatements'],
|
||||
'cash': ['cash-flow', 'cashflowStatementHistory', 'cashflowStatementHistoryQuarterly', 'cashflowStatements'],
|
||||
'keystats': ['key-statistics'],
|
||||
'history': ['history']
|
||||
}
|
||||
|
||||
# Interval value translation dictionary
|
||||
_INTERVAL_DICT = {
|
||||
'daily': '1d',
|
||||
'weekly': '1wk',
|
||||
'monthly': '1mo'
|
||||
}
|
||||
|
||||
# Base Yahoo Finance URL for the class to build on
|
||||
_BASE_YAHOO_URL = 'https://finance.yahoo.com/quote/'
|
||||
|
||||
# private static method to get the appropriate report type identifier
|
||||
@staticmethod
|
||||
def get_report_type(frequency):
|
||||
if frequency == 'annual':
|
||||
report_num = 1
|
||||
else:
|
||||
report_num = 2
|
||||
return report_num
|
||||
|
||||
# Public static method to format date serial string to readable format and vice versa
|
||||
@staticmethod
|
||||
def format_date(in_date):
|
||||
if isinstance(in_date, str):
|
||||
form_date = int(calendar.timegm(time.strptime(in_date, '%Y-%m-%d')))
|
||||
else:
|
||||
form_date = str((datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=in_date)).date())
|
||||
return form_date
|
||||
|
||||
# Private Static Method to Convert Eastern Time to UTC
|
||||
@staticmethod
|
||||
def _convert_to_utc(date, mask='%Y-%m-%d %H:%M:%S'):
|
||||
utc = pytz.utc
|
||||
eastern = pytz.timezone('US/Eastern')
|
||||
date_ = datetime.datetime.strptime(date.replace(" 0:", " 12:"), mask)
|
||||
date_eastern = eastern.localize(date_, is_dst=None)
|
||||
date_utc = date_eastern.astimezone(utc)
|
||||
return date_utc.strftime('%Y-%m-%d %H:%M:%S %Z%z')
|
||||
|
||||
# Private method to scrape data from yahoo finance
|
||||
def _scrape_data(self, url, tech_type, statement_type):
|
||||
global _lastget
|
||||
if not self._cache.get(url):
|
||||
now = int(time.time())
|
||||
if _lastget and now - _lastget < self._MIN_INTERVAL:
|
||||
time.sleep(self._MIN_INTERVAL - (now - _lastget) + 1)
|
||||
now = int(time.time())
|
||||
_lastget = now
|
||||
urlopener = UrlOpener()
|
||||
# Try to open the URL up to 10 times sleeping random time if something goes wrong
|
||||
max_retry = 10
|
||||
for i in range(0, max_retry):
|
||||
response = urlopener.open(url)
|
||||
if response.getcode() != 200:
|
||||
time.sleep(random.randrange(10, 20))
|
||||
else:
|
||||
response_content = response.read()
|
||||
soup = BeautifulSoup(response_content, "html.parser")
|
||||
re_script = soup.find("script", text=re.compile("root.App.main"))
|
||||
if re_script is not None:
|
||||
script = re_script.text
|
||||
self._cache[url] = loads(re.search("root.App.main\s+=\s+(\{.*\})", script).group(1))
|
||||
response.close()
|
||||
break
|
||||
else:
|
||||
time.sleep(random.randrange(10, 20))
|
||||
if i == max_retry - 1:
|
||||
# Raise a custom exception if we can't get the web page within max_retry attempts
|
||||
raise ManagedException("Server replied with HTTP " + str(response.getcode()) +
|
||||
" code while opening the url: " + str(url))
|
||||
data = self._cache[url]
|
||||
if tech_type == '' and statement_type != 'history':
|
||||
stores = data["context"]["dispatcher"]["stores"]["QuoteSummaryStore"]
|
||||
elif tech_type != '' and statement_type != 'history':
|
||||
stores = data["context"]["dispatcher"]["stores"]["QuoteSummaryStore"][tech_type]
|
||||
else:
|
||||
stores = data["context"]["dispatcher"]["stores"]["HistoricalPriceStore"]
|
||||
return stores
|
||||
|
||||
# Private static method to determine if a numerical value is in the data object being cleaned
|
||||
@staticmethod
|
||||
def _determine_numeric_value(value_dict):
|
||||
if 'raw' in value_dict.keys():
|
||||
numerical_val = value_dict['raw']
|
||||
else:
|
||||
numerical_val = None
|
||||
return numerical_val
|
||||
|
||||
# Private method to format date serial string to readable format and vice versa
|
||||
def _format_time(self, in_time):
|
||||
form_date_time = datetime.datetime.fromtimestamp(int(in_time)).strftime('%Y-%m-%d %H:%M:%S')
|
||||
utc_dt = self._convert_to_utc(form_date_time)
|
||||
return utc_dt
|
||||
|
||||
# Private method to return the a sub dictionary entry for the earning report cleaning
|
||||
def _get_cleaned_sub_dict_ent(self, key, val_list):
|
||||
sub_list = []
|
||||
for rec in val_list:
|
||||
sub_sub_dict = {}
|
||||
for k, v in rec.items():
|
||||
if k == 'date':
|
||||
sub_sub_dict_ent = {k: v}
|
||||
else:
|
||||
numerical_val = self._determine_numeric_value(v)
|
||||
sub_sub_dict_ent = {k: numerical_val}
|
||||
sub_sub_dict.update(sub_sub_dict_ent)
|
||||
sub_list.append(sub_sub_dict)
|
||||
sub_ent = {key: sub_list}
|
||||
return sub_ent
|
||||
|
||||
# Private method to process raw earnings data and clean
|
||||
def _clean_earnings_data(self, raw_data):
|
||||
cleaned_data = {}
|
||||
earnings_key = 'earningsData'
|
||||
financials_key = 'financialsData'
|
||||
for k, v in raw_data.items():
|
||||
if k == 'earningsChart':
|
||||
sub_dict = {}
|
||||
for k2, v2 in v.items():
|
||||
if k2 == 'quarterly':
|
||||
sub_ent = self._get_cleaned_sub_dict_ent(k2, v2)
|
||||
elif k2 == 'currentQuarterEstimate':
|
||||
numerical_val = self._determine_numeric_value(v2)
|
||||
sub_ent = {k2: numerical_val}
|
||||
else:
|
||||
sub_ent = {k2: v2}
|
||||
sub_dict.update(sub_ent)
|
||||
dict_ent = {earnings_key: sub_dict}
|
||||
cleaned_data.update(dict_ent)
|
||||
elif k == 'financialsChart':
|
||||
sub_dict = {}
|
||||
for k2, v2, in v.items():
|
||||
sub_ent = self._get_cleaned_sub_dict_ent(k2, v2)
|
||||
sub_dict.update(sub_ent)
|
||||
dict_ent = {financials_key: sub_dict}
|
||||
cleaned_data.update(dict_ent)
|
||||
else:
|
||||
if k != 'maxAge':
|
||||
dict_ent = {k: v}
|
||||
cleaned_data.update(dict_ent)
|
||||
return cleaned_data
|
||||
|
||||
# Private method to clean summary and price reports
|
||||
def _clean_reports(self, raw_data):
|
||||
cleaned_dict = {}
|
||||
if raw_data is None:
|
||||
return None
|
||||
for k, v in raw_data.items():
|
||||
if 'Time' in k:
|
||||
formatted_utc_time = self._format_time(v)
|
||||
dict_ent = {k: formatted_utc_time}
|
||||
elif 'Date' in k:
|
||||
try:
|
||||
formatted_date = v['fmt']
|
||||
except (KeyError, TypeError):
|
||||
formatted_date = '-'
|
||||
dict_ent = {k: formatted_date}
|
||||
elif v is None or isinstance(v, str) or isinstance(v, int) or isinstance(v, float):
|
||||
dict_ent = {k: v}
|
||||
# Python 2 and Unicode
|
||||
elif sys.version_info < (3, 0) and isinstance(v, unicode):
|
||||
dict_ent = {k: v}
|
||||
else:
|
||||
numerical_val = self._determine_numeric_value(v)
|
||||
dict_ent = {k: numerical_val}
|
||||
cleaned_dict.update(dict_ent)
|
||||
return cleaned_dict
|
||||
|
||||
# Private Static Method to ensure ticker is URL encoded
|
||||
@staticmethod
|
||||
def _encode_ticker(ticker_str):
|
||||
encoded_ticker = ticker_str.replace('=', '%3D')
|
||||
return encoded_ticker
|
||||
|
||||
# Private method to get time interval code
|
||||
def _build_historical_url(self, ticker, hist_oj):
|
||||
url = self._BASE_YAHOO_URL + self._encode_ticker(ticker) + '/history?period1=' + str(hist_oj['start']) + \
|
||||
'&period2=' + str(hist_oj['end']) + '&interval=' + hist_oj['interval'] + '&filter=history&frequency=' + \
|
||||
hist_oj['interval']
|
||||
return url
|
||||
|
||||
# Private Method to clean the dates of the newly returns historical stock data into readable format
|
||||
def _clean_historical_data(self, hist_data, last_attempt=False):
|
||||
data = {}
|
||||
for k, v in hist_data.items():
|
||||
if k == 'eventsData':
|
||||
event_obj = {}
|
||||
if isinstance(v, list):
|
||||
dict_ent = {k: event_obj}
|
||||
else:
|
||||
for type_key, type_obj in v.items():
|
||||
formatted_type_obj = {}
|
||||
for date_key, date_obj in type_obj.items():
|
||||
formatted_date_key = self.format_date(int(date_key))
|
||||
cleaned_date = self.format_date(int(date_obj['date']))
|
||||
date_obj.update({'formatted_date': cleaned_date})
|
||||
formatted_type_obj.update({formatted_date_key: date_obj})
|
||||
event_obj.update({type_key: formatted_type_obj})
|
||||
dict_ent = {k: event_obj}
|
||||
elif 'date' in k.lower():
|
||||
if v is not None:
|
||||
cleaned_date = self.format_date(v)
|
||||
dict_ent = {k: {'formatted_date': cleaned_date, 'date': v}}
|
||||
else:
|
||||
if last_attempt is False:
|
||||
return None
|
||||
else:
|
||||
dict_ent = {k: {'formatted_date': None, 'date': v}}
|
||||
elif isinstance(v, list):
|
||||
sub_dict_list = []
|
||||
for sub_dict in v:
|
||||
sub_dict['formatted_date'] = self.format_date(sub_dict['date'])
|
||||
sub_dict_list.append(sub_dict)
|
||||
dict_ent = {k: sub_dict_list}
|
||||
else:
|
||||
dict_ent = {k: v}
|
||||
data.update(dict_ent)
|
||||
return data
|
||||
|
||||
# Private Static Method to build API url for GET Request
|
||||
@staticmethod
|
||||
def _build_api_url(hist_obj, up_ticker):
|
||||
base_url = "https://query1.finance.yahoo.com/v8/finance/chart/"
|
||||
api_url = base_url + up_ticker + '?symbol=' + up_ticker + '&period1=' + str(hist_obj['start']) + '&period2=' + \
|
||||
str(hist_obj['end']) + '&interval=' + hist_obj['interval']
|
||||
api_url += '&events=div|split|earn&lang=en-US®ion=US'
|
||||
return api_url
|
||||
|
||||
# Private Method to get financial data via API Call
|
||||
def _get_api_data(self, api_url, tries=0):
|
||||
urlopener = UrlOpener()
|
||||
response = urlopener.open(api_url)
|
||||
if response.getcode() == 200:
|
||||
res_content = response.read()
|
||||
response.close()
|
||||
if sys.version_info < (3, 0):
|
||||
return loads(res_content)
|
||||
return loads(res_content.decode('utf-8'))
|
||||
else:
|
||||
if tries < 5:
|
||||
time.sleep(random.randrange(10, 20))
|
||||
tries += 1
|
||||
return self._get_api_data(api_url, tries)
|
||||
else:
|
||||
return None
|
||||
|
||||
# Private Method to clean API data
|
||||
def _clean_api_data(self, api_url):
|
||||
raw_data = self._get_api_data(api_url)
|
||||
ret_obj = {}
|
||||
ret_obj.update({'eventsData': []})
|
||||
if raw_data is None:
|
||||
return ret_obj
|
||||
results = raw_data['chart']['result']
|
||||
if results is None:
|
||||
return ret_obj
|
||||
for result in results:
|
||||
tz_sub_dict = {}
|
||||
ret_obj.update({'eventsData': result.get('events', {})})
|
||||
ret_obj.update({'firstTradeDate': result['meta'].get('firstTradeDate', 'NA')})
|
||||
ret_obj.update({'currency': result['meta'].get('currency', 'NA')})
|
||||
ret_obj.update({'instrumentType': result['meta'].get('instrumentType', 'NA')})
|
||||
tz_sub_dict.update({'gmtOffset': result['meta']['gmtoffset']})
|
||||
ret_obj.update({'timeZone': tz_sub_dict})
|
||||
timestamp_list = result['timestamp']
|
||||
high_price_list = result['indicators']['quote'][0]['high']
|
||||
low_price_list = result['indicators']['quote'][0]['low']
|
||||
open_price_list = result['indicators']['quote'][0]['open']
|
||||
close_price_list = result['indicators']['quote'][0]['close']
|
||||
volume_list = result['indicators']['quote'][0]['volume']
|
||||
adj_close_list = result['indicators']['adjclose'][0]['adjclose']
|
||||
i = 0
|
||||
prices_list = []
|
||||
for timestamp in timestamp_list:
|
||||
price_dict = {}
|
||||
price_dict.update({'date': timestamp})
|
||||
price_dict.update({'high': high_price_list[i]})
|
||||
price_dict.update({'low': low_price_list[i]})
|
||||
price_dict.update({'open': open_price_list[i]})
|
||||
price_dict.update({'close': close_price_list[i]})
|
||||
price_dict.update({'volume': volume_list[i]})
|
||||
price_dict.update({'adjclose': adj_close_list[i]})
|
||||
prices_list.append(price_dict)
|
||||
i += 1
|
||||
ret_obj.update({'prices': prices_list})
|
||||
return ret_obj
|
||||
|
||||
# Private Method to Handle Recursive API Request
|
||||
def _recursive_api_request(self, hist_obj, up_ticker, i=0):
|
||||
api_url = self._build_api_url(hist_obj, up_ticker)
|
||||
re_data = self._clean_api_data(api_url)
|
||||
cleaned_re_data = self._clean_historical_data(re_data)
|
||||
if cleaned_re_data is not None:
|
||||
return cleaned_re_data
|
||||
else:
|
||||
if i < 3:
|
||||
i += 1
|
||||
return self._recursive_api_request(hist_obj, up_ticker, i)
|
||||
else:
|
||||
return self._clean_historical_data(re_data, True)
|
||||
|
||||
# Private Method to take scrapped data and build a data dictionary with
|
||||
def _create_dict_ent(self, up_ticker, statement_type, tech_type, report_name, hist_obj):
|
||||
YAHOO_URL = self._BASE_YAHOO_URL + up_ticker + '/' + self.YAHOO_FINANCIAL_TYPES[statement_type][0] + '?p=' +\
|
||||
up_ticker
|
||||
if tech_type == '' and statement_type != 'history':
|
||||
try:
|
||||
re_data = self._scrape_data(YAHOO_URL, tech_type, statement_type)
|
||||
dict_ent = {up_ticker: re_data[u'' + report_name], 'dataType': report_name}
|
||||
except KeyError:
|
||||
re_data = None
|
||||
dict_ent = {up_ticker: re_data, 'dataType': report_name}
|
||||
elif tech_type != '' and statement_type != 'history':
|
||||
try:
|
||||
re_data = self._scrape_data(YAHOO_URL, tech_type, statement_type)
|
||||
except KeyError:
|
||||
re_data = None
|
||||
dict_ent = {up_ticker: re_data}
|
||||
else:
|
||||
YAHOO_URL = self._build_historical_url(up_ticker, hist_obj)
|
||||
try:
|
||||
cleaned_re_data = self._recursive_api_request(hist_obj, up_ticker)
|
||||
except KeyError:
|
||||
try:
|
||||
re_data = self._scrape_data(YAHOO_URL, tech_type, statement_type)
|
||||
cleaned_re_data = self._clean_historical_data(re_data)
|
||||
except KeyError:
|
||||
cleaned_re_data = None
|
||||
dict_ent = {up_ticker: cleaned_re_data}
|
||||
return dict_ent
|
||||
|
||||
# Private method to return the stmt_id for the reformat_process
|
||||
def _get_stmt_id(self, statement_type, raw_data):
|
||||
stmt_id = ''
|
||||
i = 0
|
||||
for key in raw_data.keys():
|
||||
if key in self.YAHOO_FINANCIAL_TYPES[statement_type.lower()]:
|
||||
stmt_id = key
|
||||
i += 1
|
||||
if i != 1:
|
||||
return None
|
||||
return stmt_id
|
||||
|
||||
# Private Method for the Reformat Process
|
||||
def _reformat_stmt_data_process(self, raw_data, statement_type):
|
||||
final_data_list = []
|
||||
if raw_data is not None:
|
||||
stmt_id = self._get_stmt_id(statement_type, raw_data)
|
||||
if stmt_id is None:
|
||||
return final_data_list
|
||||
hashed_data_list = raw_data[stmt_id]
|
||||
for data_item in hashed_data_list:
|
||||
data_date = ''
|
||||
sub_data_dict = {}
|
||||
for k, v in data_item.items():
|
||||
if k == 'endDate':
|
||||
data_date = v['fmt']
|
||||
elif k != 'maxAge':
|
||||
numerical_val = self._determine_numeric_value(v)
|
||||
sub_dict_item = {k: numerical_val}
|
||||
sub_data_dict.update(sub_dict_item)
|
||||
dict_item = {data_date: sub_data_dict}
|
||||
final_data_list.append(dict_item)
|
||||
return final_data_list
|
||||
else:
|
||||
return raw_data
|
||||
|
||||
# Private Method to return subdict entry for the statement reformat process
|
||||
def _get_sub_dict_ent(self, ticker, raw_data, statement_type):
|
||||
form_data_list = self._reformat_stmt_data_process(raw_data[ticker], statement_type)
|
||||
return {ticker: form_data_list}
|
||||
|
||||
# Public method to get time interval code
|
||||
def get_time_code(self, time_interval):
|
||||
interval_code = self._INTERVAL_DICT[time_interval.lower()]
|
||||
return interval_code
|
||||
|
||||
# Public Method to get stock data
|
||||
def get_stock_data(self, statement_type='income', tech_type='', report_name='', hist_obj={}):
|
||||
data = {}
|
||||
if isinstance(self.ticker, str):
|
||||
dict_ent = self._create_dict_ent(self.ticker, statement_type, tech_type, report_name, hist_obj)
|
||||
data.update(dict_ent)
|
||||
else:
|
||||
for tick in self.ticker:
|
||||
try:
|
||||
dict_ent = self._create_dict_ent(tick, statement_type, tech_type, report_name, hist_obj)
|
||||
data.update(dict_ent)
|
||||
except ManagedException:
|
||||
print("Warning! Ticker: " + str(tick) + " error - " + str(ManagedException))
|
||||
print("The process is still running...")
|
||||
continue
|
||||
return data
|
||||
|
||||
# Public Method to get technical stock datafrom yahoofinancials import YahooFinancials
|
||||
|
||||
def get_stock_tech_data(self, tech_type):
|
||||
if tech_type == 'defaultKeyStatistics':
|
||||
return self.get_stock_data(statement_type='keystats', tech_type=tech_type)
|
||||
else:
|
||||
return self.get_stock_data(tech_type=tech_type)
|
||||
|
||||
# Public Method to get reformatted statement data
|
||||
def get_reformatted_stmt_data(self, raw_data, statement_type):
|
||||
data_dict = {}
|
||||
sub_dict = {}
|
||||
data_type = raw_data['dataType']
|
||||
if isinstance(self.ticker, str):
|
||||
sub_dict_ent = self._get_sub_dict_ent(self.ticker, raw_data, statement_type)
|
||||
sub_dict.update(sub_dict_ent)
|
||||
dict_ent = {data_type: sub_dict}
|
||||
data_dict.update(dict_ent)
|
||||
else:
|
||||
for tick in self.ticker:
|
||||
sub_dict_ent = self._get_sub_dict_ent(tick, raw_data, statement_type)
|
||||
sub_dict.update(sub_dict_ent)
|
||||
dict_ent = {data_type: sub_dict}
|
||||
data_dict.update(dict_ent)
|
||||
return data_dict
|
||||
|
||||
# Public method to get cleaned summary and price report data
|
||||
def get_clean_data(self, raw_report_data, report_type):
|
||||
cleaned_data_dict = {}
|
||||
if isinstance(self.ticker, str):
|
||||
if report_type == 'earnings':
|
||||
try:
|
||||
cleaned_data = self._clean_earnings_data(raw_report_data[self.ticker])
|
||||
except:
|
||||
cleaned_data = None
|
||||
else:
|
||||
try:
|
||||
cleaned_data = self._clean_reports(raw_report_data[self.ticker])
|
||||
except:
|
||||
cleaned_data = None
|
||||
cleaned_data_dict.update({self.ticker: cleaned_data})
|
||||
else:
|
||||
for tick in self.ticker:
|
||||
if report_type == 'earnings':
|
||||
try:
|
||||
cleaned_data = self._clean_earnings_data(raw_report_data[tick])
|
||||
except:
|
||||
cleaned_data = None
|
||||
else:
|
||||
try:
|
||||
cleaned_data = self._clean_reports(raw_report_data[tick])
|
||||
except:
|
||||
cleaned_data = None
|
||||
cleaned_data_dict.update({tick: cleaned_data})
|
||||
return cleaned_data_dict
|
||||
|
||||
# Private method to handle dividend data requestsfrom yahoofinancials import YahooFinancials
|
||||
|
||||
def _handle_api_dividend_request(self, cur_ticker, start, end, interval):
|
||||
re_dividends = []
|
||||
test_url = 'https://query1.finance.yahoo.com/v8/finance/chart/' + cur_ticker + \
|
||||
'?period1=' + str(start) + '&period2=' + str(end) + '&interval=' + interval + '&events=div'
|
||||
div_dict = self._get_api_data(test_url)['chart']['result'][0]['events']['dividends']
|
||||
for div_time_key, div_obj in div_dict.items():
|
||||
dividend_obj = {
|
||||
'date': div_obj['date'],
|
||||
'formatted_date': self.format_date(int(div_obj['date'])),
|
||||
'amount': div_obj.get('amount', None)
|
||||
}
|
||||
re_dividends.append(dividend_obj)
|
||||
return sorted(re_dividends, key=lambda div: div['date'])
|
||||
|
||||
# Public method to get daily dividend data
|
||||
def get_stock_dividend_data(self, start, end, interval):
|
||||
interval_code = self.get_time_code(interval)
|
||||
if isinstance(self.ticker, str):
|
||||
try:
|
||||
return {self.ticker: self._handle_api_dividend_request(self.ticker, start, end, interval_code)}
|
||||
except:
|
||||
return {self.ticker: None}
|
||||
else:
|
||||
re_data = {}
|
||||
for tick in self.ticker:
|
||||
try:
|
||||
div_data = self._handle_api_dividend_request(tick, start, end, interval_code)
|
||||
re_data.update({tick: div_data})
|
||||
except:
|
||||
re_data.update({tick: None})
|
||||
return re_data
|
||||
|
||||
|
||||
# Class containing methods to create stock data extracts
|
||||
class YahooFinancials(YahooFinanceETL):
|
||||
|
||||
# Private method that handles financial statement extraction
|
||||
def _run_financial_stmt(self, statement_type, report_num, reformat):
|
||||
report_name = self.YAHOO_FINANCIAL_TYPES[statement_type][report_num]
|
||||
if reformat:
|
||||
raw_data = self.get_stock_data(statement_type, report_name=report_name)
|
||||
data = self.get_reformatted_stmt_data(raw_data, statement_type)
|
||||
else:
|
||||
data = self.get_stock_data(statement_type, report_name=report_name)
|
||||
return data
|
||||
|
||||
# Public Method for the user to get financial statement data
|
||||
def get_financial_stmts(self, frequency, statement_type, reformat=True):
|
||||
report_num = self.get_report_type(frequency)
|
||||
if isinstance(statement_type, str):
|
||||
data = self._run_financial_stmt(statement_type, report_num, reformat)
|
||||
else:
|
||||
data = {}
|
||||
for stmt_type in statement_type:
|
||||
re_data = self._run_financial_stmt(stmt_type, report_num, reformat)
|
||||
data.update(re_data)
|
||||
return data
|
||||
|
||||
# Public Method for the user to get stock price data
|
||||
def get_stock_price_data(self, reformat=True):
|
||||
if reformat:
|
||||
return self.get_clean_data(self.get_stock_tech_data('price'), 'price')
|
||||
else:
|
||||
return self.get_stock_tech_data('price')
|
||||
|
||||
# Public Method for the user to return key-statistics data
|
||||
def get_key_statistics_data(self, reformat=True):
|
||||
if reformat:
|
||||
return self.get_clean_data(self.get_stock_tech_data('defaultKeyStatistics'), 'defaultKeyStatistics')
|
||||
else:
|
||||
return self.get_stock_tech_data('defaultKeyStatistics')
|
||||
|
||||
# Public Method for the user to get stock earnings data
|
||||
def get_stock_earnings_data(self, reformat=True):
|
||||
if reformat:
|
||||
return self.get_clean_data(self.get_stock_tech_data('earnings'), 'earnings')
|
||||
else:
|
||||
return self.get_stock_tech_data('earnings')
|
||||
|
||||
# Public Method for the user to get stock summary data
|
||||
def get_summary_data(self, reformat=True):
|
||||
if reformat:
|
||||
return self.get_clean_data(self.get_stock_tech_data('summaryDetail'), 'summaryDetail')
|
||||
else:
|
||||
return self.get_stock_tech_data('summaryDetail')
|
||||
|
||||
# Public Method for the user to get the yahoo summary url
|
||||
def get_stock_summary_url(self):
|
||||
if isinstance(self.ticker, str):
|
||||
return self._BASE_YAHOO_URL + self.ticker
|
||||
return {t: self._BASE_YAHOO_URL + t for t in self.ticker}
|
||||
|
||||
# Public Method for the user to get stock quote data
|
||||
def get_stock_quote_type_data(self):
|
||||
return self.get_stock_tech_data('quoteType')
|
||||
|
||||
# Public Method for user to get historical price data with
|
||||
def get_historical_price_data(self, start_date, end_date, time_interval):
|
||||
interval_code = self.get_time_code(time_interval)
|
||||
start = self.format_date(start_date)
|
||||
end = self.format_date(end_date)
|
||||
hist_obj = {'start': start, 'end': end, 'interval': interval_code}
|
||||
return self.get_stock_data('history', hist_obj=hist_obj)
|
||||
|
||||
# Private Method for Functions needing stock_price_data
|
||||
def _stock_price_data(self, data_field):
|
||||
if isinstance(self.ticker, str):
|
||||
if self.get_stock_price_data()[self.ticker] is None:
|
||||
return None
|
||||
return self.get_stock_price_data()[self.ticker].get(data_field, None)
|
||||
else:
|
||||
ret_obj = {}
|
||||
for tick in self.ticker:
|
||||
if self.get_stock_price_data()[tick] is None:
|
||||
ret_obj.update({tick: None})
|
||||
else:
|
||||
ret_obj.update({tick: self.get_stock_price_data()[tick].get(data_field, None)})
|
||||
return ret_obj
|
||||
|
||||
# Private Method for Functions needing stock_price_data
|
||||
def _stock_summary_data(self, data_field):
|
||||
if isinstance(self.ticker, str):
|
||||
if self.get_summary_data()[self.ticker] is None:
|
||||
return None
|
||||
return self.get_summary_data()[self.ticker].get(data_field, None)
|
||||
else:
|
||||
ret_obj = {}
|
||||
for tick in self.ticker:
|
||||
if self.get_summary_data()[tick] is None:
|
||||
ret_obj.update({tick: None})
|
||||
else:
|
||||
ret_obj.update({tick: self.get_summary_data()[tick].get(data_field, None)})
|
||||
return ret_obj
|
||||
|
||||
# Private Method for Functions needing financial statement data
|
||||
def _financial_statement_data(self, stmt_type, stmt_code, field_name, freq):
|
||||
re_data = self.get_financial_stmts(freq, stmt_type)[stmt_code]
|
||||
if isinstance(self.ticker, str):
|
||||
try:
|
||||
date_key = re_data[self.ticker][0].keys()[0]
|
||||
except (IndexError, AttributeError, TypeError):
|
||||
date_key = list(re_data[self.ticker][0])[0]
|
||||
data = re_data[self.ticker][0][date_key][field_name]
|
||||
else:
|
||||
data = {}
|
||||
for tick in self.ticker:
|
||||
try:
|
||||
date_key = re_data[tick][0].keys()[0]
|
||||
except:
|
||||
try:
|
||||
date_key = list(re_data[tick][0].keys())[0]
|
||||
except:
|
||||
date_key = None
|
||||
if date_key is not None:
|
||||
sub_data = re_data[tick][0][date_key][field_name]
|
||||
data.update({tick: sub_data})
|
||||
else:
|
||||
data.update({tick: None})
|
||||
return data
|
||||
|
||||
# Public method to get daily dividend data
|
||||
def get_daily_dividend_data(self, start_date, end_date):
|
||||
start = self.format_date(start_date)
|
||||
end = self.format_date(end_date)
|
||||
return self.get_stock_dividend_data(start, end, 'daily')
|
||||
|
||||
# Public Price Data Methods
|
||||
def get_current_price(self):
|
||||
return self._stock_price_data('regularMarketPrice')
|
||||
|
||||
def get_current_change(self):
|
||||
return self._stock_price_data('regularMarketChange')
|
||||
|
||||
def get_current_percent_change(self):
|
||||
return self._stock_price_data('regularMarketChangePercent')
|
||||
|
||||
def get_current_volume(self):
|
||||
return self._stock_price_data('regularMarketVolume')
|
||||
|
||||
def get_prev_close_price(self):
|
||||
return self._stock_price_data('regularMarketPreviousClose')
|
||||
|
||||
def get_open_price(self):
|
||||
return self._stock_price_data('regularMarketOpen')
|
||||
|
||||
def get_ten_day_avg_daily_volume(self):
|
||||
return self._stock_price_data('averageDailyVolume10Day')
|
||||
|
||||
def get_three_month_avg_daily_volume(self):
|
||||
return self._stock_price_data('averageDailyVolume3Month')
|
||||
|
||||
def get_stock_exchange(self):
|
||||
return self._stock_price_data('exchangeName')
|
||||
|
||||
def get_market_cap(self):
|
||||
return self._stock_price_data('marketCap')
|
||||
|
||||
def get_daily_low(self):
|
||||
return self._stock_price_data('regularMarketDayLow')
|
||||
|
||||
def get_daily_high(self):
|
||||
return self._stock_price_data('regularMarketDayHigh')
|
||||
|
||||
def get_currency(self):
|
||||
return self._stock_price_data('currency')
|
||||
|
||||
# Public Summary Data Methods
|
||||
def get_yearly_high(self):
|
||||
return self._stock_summary_data('fiftyTwoWeekHigh')
|
||||
|
||||
def get_yearly_low(self):
|
||||
return self._stock_summary_data('fiftyTwoWeekLow')
|
||||
|
||||
def get_dividend_yield(self):
|
||||
return self._stock_summary_data('dividendYield')
|
||||
|
||||
def get_annual_avg_div_yield(self):
|
||||
return self._stock_summary_data('trailingAnnualDividendYield')
|
||||
|
||||
def get_five_yr_avg_div_yield(self):
|
||||
return self._stock_summary_data('fiveYearAvgDividendYield')
|
||||
|
||||
def get_dividend_rate(self):
|
||||
return self._stock_summary_data('dividendRate')
|
||||
|
||||
def get_annual_avg_div_rate(self):
|
||||
return self._stock_summary_data('trailingAnnualDividendRate')
|
||||
|
||||
def get_50day_moving_avg(self):
|
||||
return self._stock_summary_data('fiftyDayAverage')
|
||||
|
||||
def get_200day_moving_avg(self):
|
||||
return self._stock_summary_data('twoHundredDayAverage')
|
||||
|
||||
def get_beta(self):
|
||||
return self._stock_summary_data('beta')
|
||||
|
||||
def get_payout_ratio(self):
|
||||
return self._stock_summary_data('payoutRatio')
|
||||
|
||||
def get_pe_ratio(self):
|
||||
return self._stock_summary_data('trailingPE')
|
||||
|
||||
def get_price_to_sales(self):
|
||||
return self._stock_summary_data('priceToSalesTrailing12Months')
|
||||
|
||||
def get_exdividend_date(self):
|
||||
return self._stock_summary_data('exDividendDate')
|
||||
|
||||
# Financial Statement Data Methods
|
||||
def get_book_value(self):
|
||||
return self._financial_statement_data('balance', 'balanceSheetHistoryQuarterly',
|
||||
'totalStockholderEquity', 'quarterly')
|
||||
|
||||
def get_ebit(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'ebit', 'annual')
|
||||
|
||||
def get_net_income(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'netIncome', 'annual')
|
||||
|
||||
def get_interest_expense(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'interestExpense', 'annual')
|
||||
|
||||
def get_operating_income(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'operatingIncome', 'annual')
|
||||
|
||||
def get_total_operating_expense(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'totalOperatingExpenses', 'annual')
|
||||
|
||||
def get_total_revenue(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'totalRevenue', 'annual')
|
||||
|
||||
def get_cost_of_revenue(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'costOfRevenue', 'annual')
|
||||
|
||||
def get_income_before_tax(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'incomeBeforeTax', 'annual')
|
||||
|
||||
def get_income_tax_expense(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'incomeTaxExpense', 'annual')
|
||||
|
||||
def get_gross_profit(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'grossProfit', 'annual')
|
||||
|
||||
def get_net_income_from_continuing_ops(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory',
|
||||
'netIncomeFromContinuingOps', 'annual')
|
||||
|
||||
def get_research_and_development(self):
|
||||
return self._financial_statement_data('income', 'incomeStatementHistory', 'researchDevelopment', 'annual')
|
||||
|
||||
# Calculated Financial Methods
|
||||
def get_earnings_per_share(self):
|
||||
price_data = self.get_current_price()
|
||||
pe_ratio = self.get_pe_ratio()
|
||||
if isinstance(self.ticker, str):
|
||||
if price_data is not None and pe_ratio is not None:
|
||||
return price_data / pe_ratio
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
ret_obj = {}
|
||||
for tick in self.ticker:
|
||||
if price_data[tick] is not None and pe_ratio[tick] is not None:
|
||||
ret_obj.update({tick: price_data[tick] / pe_ratio[tick]})
|
||||
else:
|
||||
ret_obj.update({tick: None})
|
||||
return ret_obj
|
||||
|
||||
def get_num_shares_outstanding(self, price_type='current'):
|
||||
today_low = self._stock_summary_data('dayHigh')
|
||||
today_high = self._stock_summary_data('dayLow')
|
||||
cur_market_cap = self._stock_summary_data('marketCap')
|
||||
if isinstance(self.ticker, str):
|
||||
if cur_market_cap is not None:
|
||||
if price_type == 'current':
|
||||
current = self.get_current_price()
|
||||
if current is not None:
|
||||
today_average = current
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
if today_high is not None and today_low is not None:
|
||||
today_average = (today_high + today_low) / 2
|
||||
else:
|
||||
return None
|
||||
return cur_market_cap / today_average
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
ret_obj = {}
|
||||
for tick in self.ticker:
|
||||
if cur_market_cap[tick] is not None:
|
||||
if price_type == 'current':
|
||||
current = self.get_current_price()
|
||||
if current[tick] is not None:
|
||||
ret_obj.update({tick: cur_market_cap[tick] / current[tick]})
|
||||
else:
|
||||
ret_obj.update({tick: None})
|
||||
else:
|
||||
if today_low[tick] is not None and today_high[tick] is not None:
|
||||
today_average = (today_high[tick] + today_low[tick]) / 2
|
||||
ret_obj.update({tick: cur_market_cap[tick] / today_average})
|
||||
else:
|
||||
ret_obj.update({tick: None})
|
||||
else:
|
||||
ret_obj.update({tick: None})
|
||||
return ret_obj
|
@ -1,4 +1,6 @@
|
||||
requests~=2.21.0
|
||||
numpy~=1.15.4
|
||||
beautifulsoup4~=4.7.1
|
||||
halo~=0.0.23
|
||||
requests-cache~=0.4.13 # NOT REQUIRED
|
||||
yahoofinancials~=1.5 # NOT REQUIRED
|
10
stocks.txt
Normal file
10
stocks.txt
Normal file
@ -0,0 +1,10 @@
|
||||
VFINX
|
||||
SMARX
|
||||
BRASX
|
||||
USIBX
|
||||
DSIAX
|
||||
TIHYX
|
||||
SGYAX
|
||||
TPLGX
|
||||
PREFX
|
||||
FBGRX
|
Loading…
Reference in New Issue
Block a user