General fixes

Added color, config file, moved packages into ./modules
This commit is contained in:
Andrew Dinh 2019-03-18 10:26:07 -07:00
parent 6366453f63
commit 5d1f96c403
9 changed files with 1657 additions and 205 deletions

2
.gitignore vendored
View File

@ -3,4 +3,4 @@ test/
.vscode/
*.sqlite
README.html
*stocks.txt
*-stocks.txt

View File

@ -1,5 +1,8 @@
# Python file for general functions
import sys
sys.path.insert(0, './modules')
def getNearest(items, pivot):
return min(items, key=lambda x: abs(x - pivot))
@ -52,14 +55,18 @@ def strintIsFloat(s):
def fromCache(r):
import requests_cache
from termcolor import colored, cprint
if r.from_cache == True:
print('(Response taken from cache)')
cprint('(Response taken from cache)', 'white', attrs=['dark'])
return
def getJoke():
import requests
import sys
from termcolor import colored, cprint
import requests_cache
from halo import Halo
with requests_cache.disabled():
'''
f = requests.get('https://official-joke-api.appspot.com/jokes/random').json()
@ -69,9 +76,13 @@ def getJoke():
'''
headers = {'Accept': 'application/json',
'User-Agent': 'fund-indicators (https://github.com/andrewkdinh/fund-indicators)'}
url = 'https://icanhazdadjoke.com'
cprint('Get: ' + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
f = requests.get('https://icanhazdadjoke.com/', headers=headers).json()
print('')
print(f['joke'])
print(colored(f['joke'], 'green'))
def hasNumbers(inputString):
@ -127,6 +138,50 @@ def fileExists(file):
import os.path
return os.path.exists(file)
def listIndexExists(i):
try:
i
return True
except IndexError:
return False
def removeOutliers(i):
import statistics
m = statistics.median(i)
firstQ = []
thirdQ = []
for x in i:
if x < m:
firstQ.append(x)
elif x > m:
thirdQ.append(x)
firstQm = statistics.median(firstQ)
thirdQm = statistics.median(thirdQ)
iqr = (thirdQm - firstQm) * 1.5
goodList = []
badList = []
for x in i:
if x < (thirdQm + iqr) and x > (firstQm - iqr):
goodList.append(x)
else:
badList.append(x) # In case I want to know. If not, then I just make it equal to returnlist[0]
returnList = [goodList, badList, firstQm, m, thirdQm, iqr]
return returnList
def validateJson(text):
import json
try:
json.loads(text)
return True
except ValueError:
return False
def keyInDict(dict, key):
if key in dict:
return True
else:
return False
def main():
exit()

View File

@ -1,25 +1,45 @@
# Mutual Fund Indicators
# fund-indicators
[![License](https://img.shields.io/github/license/andrewkdinh/fund-indicators.svg)](https://raw.githubusercontent.com/andrewkdinh/fund-indicators/master/LICENSE)
![](https://img.shields.io/github/last-commit/andrewkdinh/fund-indicators.svg)
[![](https://img.shields.io/github/last-commit/andrewkdinh/fund-indicators.svg)](https://github.com/andrewkdinh/fund-indicators/commits/master)
![](https://img.shields.io/github/languages/top/andrewkdinh/fund-indicators.svg)
![](https://img.shields.io/github/languages/code-size/andrewkdinh/fund-indicators.svg)
A project to determine indicators of overperforming mutual funds.
A project to determine relationships between mutual funds and different factors.
Examine correlation between performance and market capitalization, persistence, turnover, and expense ratios.
Calculates relationships between: Previous performance, Alpha, Sharpe Ratio, Sortino Ratio
## Prerequisites
and Expense ratios, Turnover, Market Capitalization (Asset Size), Persistence
`$ pip install -r requirements.txt`
Give it a try at [repl.run](https://fund-indicators.andrewkdinh.repl.run) or [repl.it](https://repl.it/@andrewkdinh/fund-indicators)
## Key Features
- 100% automated
- Uses multiple API's in case another fails
- Caches http requests for future runs
- Scrapes data from Yahoo Finance
- Color-coded for easy viewing
- Optional graphs to easily visualize linear regression results
- A new joke every time it runs
## Quickstart
To begin, run
```shell
pip install -r requirements.txt
python main.py
```
`$ python main.py`
Pre-chosen stocks listed in `stocks.txt`
Some ticker values to try:
SPY, VFINX, VTHR, DJIA
## Credits
This project uses a wide variety of open-source projects
- [NumPy](https://github.com/numpy/numpy), [Termcolor](https://github.com/hfeeki/termcolor), [Beautiful Soup](https://launchpad.net/beautifulsoup), [yahoofinancials](https://github.com/JECSand/yahoofinancials), [requests-cache](https://github.com/reclosedev/requests-cache), [halo](https://github.com/manrajgrover/halo)
And thank you to those that have helped me with the idea and product:
- Amber Bruce, [Alex Stoykov](http://stoykov.us/), Doug Achterman, [Stack Overflow](https://stackoverflow.com)
Created by Andrew Dinh from Dr. TJ Owens Gilroy Early College Academy

63
config.example.json Normal file
View File

@ -0,0 +1,63 @@
{
"_comment": "Only use this if everything you know is correct",
"Config": {
"Check Packages": true,
"Check Python Version": true,
"Check Internet Connection": false,
"Get Joke": true,
"Benchmark": "SPY",
"Method": "Kiplinger",
"Time Frame": 60,
"Indicator": "Expense Ratio",
"Remove Outliers": true,
"Sources": [
"Alpha Vantage",
"Yahoo",
"IEX",
"Tiingo"
]
},
"Possible Values": {
"Check Packages": [
true,
false
],
"Check Python Version": [
true,
false
],
"Check Internet Connection": [
true,
false
],
"Get Joke": [
true,
false
],
"Benchmark": [
"SPY",
"DJIA",
"VTHR",
"EFG"
],
"Method": [
"Read",
"Manual",
"U.S. News",
"Kiplinger",
"TheStreet"
],
"Time Frame": "Any integer",
"Indicator": [
"Expense Ratio",
"Market Capitalization",
"Turnover",
"Persistence"
],
"Remove Outliers": [
true,
false
],
"Sources": "Choose an order out of ['Alpha Vantage', 'Yahoo', 'IEX', 'Tiingo']"
}
}

493
main.py
View File

@ -3,25 +3,33 @@
# Andrew Dinh
# Python 3.6.7
# Required
from bs4 import BeautifulSoup
import requests
import json
import datetime
# PYTHON FILES
import Functions
import numpy as np
import re
from yahoofinancials import YahooFinancials
from termcolor import cprint
# REQUIRED
import requests_cache
import os.path
import re
import datetime
import json
import requests
from bs4 import BeautifulSoup
import numpy as np
# Required for linear regression
# OPTIONAL
import matplotlib.pyplot as plt
import sys
from halo import Halo
# Optional
# FOR ASYNC
from concurrent.futures import ThreadPoolExecutor as PoolExecutor
import time
import random
import requests_cache
import sys
sys.path.insert(0, './modules')
requests_cache.install_cache(
'cache', backend='sqlite', expire_after=43200) # 12 hours
@ -59,7 +67,6 @@ API Keys:
No: Tiingo
'''
class Stock:
# GLOBAL VARIABLES
@ -67,6 +74,11 @@ class Stock:
riskFreeRate = 0
indicator = ''
# CONFIG
removeOutliers = True
sourceList = ['Alpha Vantage', 'Yahoo', 'IEX', 'Tiingo']
config = 'N/A'
# BENCHMARK VALUES
benchmarkDates = []
benchmarkCloseValues = []
@ -100,6 +112,7 @@ class Stock:
self.downsideDeviation = 0
self.kurtosis = 0
self.skewness = 0 # Not sure if I need this
self.correlation = 0
self.linearRegression = [] # for y=mx+b, this list has [m,b]
self.indicatorValue = ''
@ -117,17 +130,17 @@ class Stock:
return self.allCloseValues
def IEX(self):
print('IEX')
url = ''.join(
('https://api.iextrading.com/1.0/stock/', self.name, '/chart/5y'))
# link = "https://api.iextrading.com/1.0/stock/spy/chart/5y"
print("\nSending request to:", url)
cprint("Get: " + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
f = requests.get(url)
Functions.fromCache(f)
json_data = f.text
if json_data == 'Unknown symbol' or f.status_code != 200:
print("IEX not available")
return 'Not available'
return 'N/A'
loaded_json = json.loads(json_data)
listIEX = []
@ -141,7 +154,7 @@ class Stock:
listIEX.append(allDates)
print(len(listIEX[0]), "dates")
print("\nFinding close values for each date")
# print("\nFinding close values for each date")
values = []
for i in range(0, len(loaded_json), 1): # If you want to do oldest first
# for i in range(len(loaded_json)-1, -1, -1):
@ -149,18 +162,18 @@ class Stock:
value = line['close']
values.append(value)
listIEX.append(values)
print(len(listIEX[1]), "close values")
print(len(listIEX[0]), 'dates and', len(listIEX[1]), "close values")
return listIEX
def AV(self):
print('Alpha Vantage')
listAV = []
url = ''.join(('https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=',
self.name, '&outputsize=full&apikey=', apiAV))
# https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&outputsize=full&apikey=demo
print("\nSending request to:", url)
cprint("Get: " + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
f = requests.get(url)
Functions.fromCache(f)
json_data = f.text
@ -168,14 +181,14 @@ class Stock:
if len(loaded_json) == 1 or f.status_code != 200 or len(loaded_json) == 0:
print("Alpha Vantage not available")
return 'Not available'
return 'N/A'
dailyTimeSeries = loaded_json['Time Series (Daily)']
listOfDates = list(dailyTimeSeries)
# listAV.append(listOfDates)
listAV.append(list(reversed(listOfDates)))
print("\nFinding close values for each date")
# print("\nFinding close values for each date")
values = []
for i in range(0, len(listOfDates), 1):
temp = listOfDates[i]
@ -185,25 +198,25 @@ class Stock:
values.append(float(value))
# listAV.append(values)
listAV.append(list(reversed(values)))
print(len(listAV[1]), "close values")
print(len(listAV[0]), 'dates and', len(listAV[1]), "close values")
return listAV
def Tiingo(self):
print('Tiingo')
token = ''.join(('Token ', apiTiingo))
headers = {
'Content-Type': 'application/json',
'Authorization': token
}
url = ''.join(('https://api.tiingo.com/tiingo/daily/', self.name))
print("\nSending request to:", url)
cprint("Get: " + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
f = requests.get(url, headers=headers)
Functions.fromCache(f)
loaded_json = f.json()
if len(loaded_json) == 1 or f.status_code != 200 or loaded_json['startDate'] == None:
print("Tiingo not available")
return 'Not available'
return 'N/A'
listTiingo = []
@ -218,7 +231,8 @@ class Stock:
url2 = ''.join((url, '/prices?startDate=',
firstDate, '&endDate=', lastDate))
# https://api.tiingo.com/tiingo/daily/<ticker>/prices?startDate=2012-1-1&endDate=2016-1-1
print("\nSending request to:", url2, '\n')
cprint("\nGet: " + url2 + '\n', 'white', attrs=['dark'])
with Halo(spinner='dots'):
requestResponse2 = requests.get(url2, headers=headers)
Functions.fromCache(requestResponse2)
loaded_json2 = requestResponse2.json()
@ -234,38 +248,86 @@ class Stock:
listTiingo.append(dates)
print(len(listTiingo[0]), "dates")
print("Finding close values for each date")
# print("Finding close values for each date")
# Used loop from finding dates
listTiingo.append(values)
print(len(listTiingo[1]), "close values")
print(len(listTiingo[0]), 'dates and',
len(listTiingo[1]), "close values")
return listTiingo
def datesAndClose(self):
print('\n', Stock.getName(self), sep='')
def Yahoo(self):
url = ''.join(('https://finance.yahoo.com/quote/',
self.name, '?p=', self.name))
cprint('Get: ' + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
t = requests.get(url)
if t.history:
print('Yahoo Finance does not have data for', self.name)
print('Yahoo not available')
return 'N/A'
else:
print('Yahoo Finance has data for', self.name)
sourceList = ['AV', 'IEX', 'Tiingo']
# sourceList = ['IEX', 'Tiingo', 'AV']
ticker = self.name
firstDate = datetime.datetime.now().date(
) - datetime.timedelta(days=self.timeFrame*31) # 31 days as a buffer just in case
with Halo(spinner='dots'):
yahoo_financials = YahooFinancials(ticker)
r = yahoo_financials.get_historical_price_data(
str(firstDate), str(datetime.date.today()), 'daily')
s = r[self.name]['prices']
listOfDates = []
listOfCloseValues = []
for i in range(0, len(s), 1):
listOfDates.append(s[i]['formatted_date'])
listOfCloseValues.append(s[i]['close'])
listYahoo = [listOfDates, listOfCloseValues]
# Sometimes close value is a None value
i = 0
while i < len(listYahoo[1]):
if Functions.listIndexExists(listYahoo[1][i]) == True:
if listYahoo[1][i] == None:
del listYahoo[1][i]
del listYahoo[0][i]
i = i - 1
i = i + 1
else:
break
print(len(listYahoo[0]), 'dates and',
len(listYahoo[1]), "close values")
return listYahoo
def datesAndClose(self):
cprint('\n' + str(self.name), 'cyan')
sourceList = Stock.sourceList
# Use each source until you get a value
for j in range(0, len(sourceList), 1):
source = sourceList[j]
print('\nSource being used:', source)
print('Source being used:', source)
if source == 'AV':
if source == 'Alpha Vantage':
datesAndCloseList = Stock.AV(self)
elif source == 'Tiingo':
datesAndCloseList = Stock.Tiingo(self)
elif source == 'Yahoo':
datesAndCloseList = Stock.Yahoo(self)
elif source == 'IEX':
datesAndCloseList = Stock.IEX(self)
elif source == 'Tiingo':
datesAndCloseList = Stock.Tiingo(self)
if datesAndCloseList != 'Not available':
if datesAndCloseList != 'N/A':
break
else:
if j == len(sourceList)-1:
print('\nNo sources have data for', self.name)
print('Removing', self.name,
print('Removing ' + self.name +
' from list of stocks to ensure compatibility later')
return 'Not available'
return 'N/A'
print('')
# Convert dates to datetime
allDates = datesAndCloseList[0]
@ -278,14 +340,14 @@ class Stock:
for i in datesAndCloseList[1]:
if i == 0:
print('Found close value of 0. This is likely something like ticker RGN (Daily Time Series with Splits and Dividend Events)')
print('Removing', self.name,
print('Removing ' + self.name +
'from list of stocks to ensure compability later')
return 'Not available'
return 'N/A'
return datesAndCloseList
def datesAndCloseFitTimeFrame(self):
print('Shortening list to fit time frame')
print('\nShortening list to fit time frame')
# Have to do this because if I just make dates = self.allDates & closeValues = self.allCloseValues, then deleting from dates & closeValues also deletes it from self.allDates & self.allCloseValues (I'm not sure why)
dates = []
closeValues = []
@ -295,7 +357,7 @@ class Stock:
firstDate = datetime.datetime.now().date() - datetime.timedelta(
days=self.timeFrame*30)
print('\n', self.timeFrame, ' months ago: ', firstDate, sep='')
print(self.timeFrame, ' months ago: ', firstDate, sep='')
closestDate = Functions.getNearest(dates, firstDate)
if closestDate != firstDate:
print('Closest date available for', self.name, ':', closestDate)
@ -315,9 +377,7 @@ class Stock:
datesAndCloseList2.append(dates)
datesAndCloseList2.append(closeValues)
print(len(dates), 'dates')
print(len(closeValues), 'close values')
print(len(dates), 'dates and', len(closeValues), 'close values')
return datesAndCloseList2
def calcAverageMonthlyReturn(self): # pylint: disable=E0202
@ -345,7 +405,7 @@ class Stock:
if firstDate == secondDate:
print('Closest date is', firstDate,
'which is after the given time frame.')
return 'Not available'
return 'N/A'
# Get corresponding close values and calculate monthly return
for i in range(0, len(self.dates), 1):
@ -499,34 +559,49 @@ class Stock:
def scrapeYahooFinance(self):
# Determine if ETF, Mutual fund, or stock
print('Determining if Yahoo Finance has data for', self.name, end=": ")
url = ''.join(('https://finance.yahoo.com/quote/',
self.name, '?p=', self.name))
if requests.get(url).history:
print('No')
return 'Not available'
cprint('Get: ' + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
t = requests.get(url)
Functions.fromCache(t)
if t.history:
print('Yahoo Finance does not have data for', self.name)
return 'N/A'
else:
print('Yes')
print('Yahoo Finance has data for', self.name)
stockType = ''
url2 = ''.join(('https://finance.yahoo.com/lookup?s=', self.name))
print('Sending request to:', url2)
raw_html = requests.get(url2).text
cprint('Get: ' + url2, 'white', attrs=['dark'])
with Halo(spinner='dots'):
x = requests.get(url2)
raw_html = x.text
Functions.fromCache(x)
soup2 = BeautifulSoup(raw_html, 'html.parser')
# Type (Stock, ETF, Mutual Fund)
r = soup2.find_all(
'td', attrs={'class': 'data-col4 Ta(start) Pstart(20px) Miw(30px)'})
t = soup2.find_all('a', attrs={'class': 'Fw(b)'}) # Name and class
u = soup2.find_all('a', attrs={'class': 'Fw(b)'}) # Name and class
z = soup2.find_all('td', attrs={
'class': 'data-col1 Ta(start) Pstart(10px) Miw(80px)'}) # Name of stock
listNames = []
for i in t:
for i in u:
if i.text.strip() == i.text.strip().upper():
listNames.append(i.text.strip())
'''
if len(i.text.strip()) < 6:
listNames.append(i.text.strip())
elif '.' in i.text.strip():
listNames.append(i.text.strip()) # Example: TSNAX (TSN.AX)
#! If having problems later, separate them by Industries (Mutual funds and ETF's are always N/A)
'''
for i in range(0, len(listNames), 1):
if listNames[i] == self.name:
break
r = r[i].text.strip()
z = z[i].text.strip()
print('Name:', z)
@ -536,36 +611,32 @@ class Stock:
elif r == 'Stocks':
stockType = 'Stock'
elif r == 'Mutual Fund':
stockType = 'Fund'
stockType = 'Mutual Fund'
else:
print('Could not determine fund type')
return 'Not available'
return 'N/A'
print('Type:', stockType)
if Stock.indicator == 'Expense Ratio':
if stockType == 'Stock':
print(
self.name, 'is a stock, and therefore does not have an expense ratio')
return 'Not available'
return 'Stock'
url = ''.join(('https://finance.yahoo.com/quote/',
self.name, '?p=', self.name))
# https://finance.yahoo.com/quote/SPY?p=SPY
print('Sending request to:', url)
raw_html = requests.get(url).text
raw_html = t.text
soup = BeautifulSoup(raw_html, 'html.parser')
r = soup.find_all('span', attrs={'class': 'Trsdu(0.3s)'})
if r == []:
print('Something went wrong with scraping expense ratio')
return('Not available')
return('N/A')
if stockType == 'ETF':
for i in range(len(r)-1, 0, -1):
s = r[i].text.strip()
if s[-1] == '%':
break
elif stockType == 'Fund':
elif stockType == 'Mutual Fund':
count = 0 # Second in set
for i in range(0, len(r)-1, 1):
s = r[i].text.strip()
@ -578,64 +649,78 @@ class Stock:
expenseRatio = float(s.replace('%', ''))
else:
print('Something went wrong with scraping expense ratio')
return 'Not available'
return 'N/A'
print(Stock.indicator + ': ', end='')
print(str(expenseRatio) + '%')
return expenseRatio
elif Stock.indicator == 'Market Capitalization':
url = ''.join(('https://finance.yahoo.com/quote/',
self.name, '?p=', self.name))
# https://finance.yahoo.com/quote/GOOGL?p=GOOGL
raw_html = requests.get(url).text
somethingWrong = False
raw_html = t.text
soup = BeautifulSoup(raw_html, 'html.parser')
r = soup.find_all(
'span', attrs={'class': 'Trsdu(0.3s)'})
if r == []:
print('Something went wrong with scraping market capitalization')
return 'Not available'
somethingWrong = True
else:
marketCap = 0
for t in r:
s = t.text.strip()
if s[-1] == 'B':
print(Stock.indicator + ': ', end='')
print(s, end='')
s = s.replace('B', '')
marketCap = float(s) * 1000000000 # 1 billion
break
elif s[-1] == 'M':
print(Stock.indicator + ': ', end='')
print(s, end='')
s = s.replace('M', '')
marketCap = float(s) * 1000000 # 1 million
break
elif s[-1] == 'K':
print(Stock.indicator + ': ', end='')
print(s, end='')
s = s.replace('K', '')
marketCap = float(s) * 1000 # 1 thousand
break
if marketCap == 0:
print('\nSomething went wrong with scraping market capitalization')
return 'Not available'
somethingWrong = True
if somethingWrong == True:
ticker = self.name
yahoo_financials = YahooFinancials(ticker)
marketCap = yahoo_financials.get_market_cap()
if marketCap != None:
print('(Taken from yahoofinancials)')
print(marketCap)
return int(marketCap)
else:
print(
'Was not able to scrape or get market capitalization from yahoo finance')
return 'N/A'
marketCap = int(marketCap)
return marketCap
print(' =', marketCap)
marketCap = marketCap / 1000000
print(
'Dividing marketCap by 1 million (to work with linear regression module):', marketCap)
return marketCap
elif Stock.indicator == 'Turnover':
if stockType == 'Stock':
print(self.name, 'is a stock, and therefore does not have turnover')
return 'Not available'
return 'Stock'
if stockType == 'Fund':
url = ''.join(('https://finance.yahoo.com/quote/',
self.name, '?p=', self.name))
# https://finance.yahoo.com/quote/SPY?p=SPY
print('Sending request to', url)
raw_html = requests.get(url).text
if stockType == 'Mutual Fund':
raw_html = t.text
soup = BeautifulSoup(raw_html, 'html.parser')
r = soup.find_all(
'span', attrs={'class': 'Trsdu(0.3s)'})
if r == []:
print('Something went wrong without scraping turnover')
return 'Not available'
return 'N/A'
turnover = 0
for i in range(len(r)-1, 0, -1):
s = r[i].text.strip()
@ -646,7 +731,8 @@ class Stock:
url = ''.join(('https://finance.yahoo.com/quote/',
self.name, '/profile?p=', self.name))
# https://finance.yahoo.com/quote/SPY/profile?p=SPY
print('Sending request to', url)
cprint('Get: ' + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
raw_html = requests.get(url).text
soup = BeautifulSoup(raw_html, 'html.parser')
@ -654,17 +740,21 @@ class Stock:
'span', attrs={'class': 'W(20%) D(b) Fl(start) Ta(e)'})
if r == []:
print('Something went wrong without scraping turnover')
return 'Not available'
return 'N/A'
turnover = 0
for i in range(len(r)-1, 0, -1):
s = r[i].text.strip()
if s[-1] == '%':
turnover = float(s.replace('%', ''))
break
elif s == 'N/A':
print(self.name, 'has a value of N/A for turnover')
return 'N/A'
if turnover == 0:
print('Something went wrong with scraping turnover')
return 'Not available'
return 'N/A'
print(Stock.indicator + ': ', end='')
print(str(turnover) + '%')
return turnover
@ -684,7 +774,9 @@ class Stock:
indicatorValue = str(
input(Stock.indicator + ' of ' + self.name + ': '))
else:
print('Something is wrong. Indicator was not found. Ending program.')
# print('Something is wrong. Indicator was not found. Ending program.')
cprint(
'Something is wrong. Indicator was not found. Ending program.', 'white', 'on_red')
exit()
if Functions.strintIsFloat(indicatorValue) == True:
@ -698,7 +790,7 @@ class Stock:
0, Stock.persTimeFrame, 1))) / Stock.persTimeFrame
persistenceSecond = self.averageMonthlyReturn
persistence = persistenceSecond-persistenceFirst
print('Change in average monthly return:', persistence)
print('Change (difference) in average monthly return:', persistence)
return persistence
@ -765,6 +857,15 @@ def stocksInit():
method = 0
methods = ['Read from a file', 'Enter manually',
'U.S. News popular funds (~35)', 'Kiplinger top-performing funds (50)', 'TheStreet top-rated mutual funds (20)']
if Stock.config != 'N/A':
methodsConfig = ['Read', 'Manual',
'U.S. News', 'Kiplinger', 'TheStreet']
for i in range(0, len(methodsConfig), 1):
if Stock.config['Method'] == methodsConfig[i]:
method = i + 1
else:
for i in range(0, len(methods), 1):
print(str(i+1) + '. ' + methods[i])
while method == 0 or method > len(methods):
@ -776,13 +877,13 @@ def stocksInit():
else:
method = 0
print('Please choose a number')
print('')
print('')
if method == 1:
defaultFiles = ['.gitignore', 'LICENSE', 'main.py', 'Functions.py',
'README.md', 'requirements.txt', 'cache.sqlite', '_test_runner.py'] # Added by repl.it for whatever reason
'README.md', 'requirements.txt', 'cache.sqlite', 'yahoofinancials.py', 'termcolor.py', 'README.html', 'config.json', '_test_runner.py'] # Added by repl.it for whatever reason
stocksFound = False
print('Files in current directory (not including default files): ')
print('\nFiles in current directory (not including default files): ')
listOfFilesTemp = [f for f in os.listdir() if os.path.isfile(f)]
listOfFiles = []
for files in listOfFilesTemp:
@ -851,7 +952,8 @@ def stocksInit():
url = 'https://money.usnews.com/funds/mutual-funds/most-popular'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36'}
print('Sending request to', url)
cprint('Get: ' + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
f = requests.get(url, headers=headers)
Functions.fromCache(f)
raw_html = f.text
@ -878,7 +980,8 @@ def stocksInit():
url = 'https://www.kiplinger.com/tool/investing/T041-S001-top-performing-mutual-funds/index.php'
headers = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}
print('Sending request to', url)
cprint('Get: ' + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
f = requests.get(url, headers=headers)
Functions.fromCache(f)
raw_html = f.text
@ -904,7 +1007,8 @@ def stocksInit():
url = 'https://www.thestreet.com/topic/21421/top-rated-mutual-funds.html'
headers = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}
print('Sending request to', url)
cprint('Get: ' + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
f = requests.get(url, headers=headers)
Functions.fromCache(f)
raw_html = f.text
@ -977,7 +1081,7 @@ def asyncData(benchmark, listOfStocks):
def sendAsync(url):
time.sleep(random.randrange(0, 2))
print('Sending request to', url)
cprint('Get: ' + url, 'white', attrs=['dark'])
requests.get(url)
return
@ -990,7 +1094,7 @@ def timeFrameInit():
temp = input(' ')
isInteger = Functions.stringIsInt(temp)
if isInteger == True:
if int(temp) > 1:
if int(temp) > 1 and int(temp) < 1000:
months = int(temp)
else:
print('Please enter a number greater than 1')
@ -1003,15 +1107,15 @@ def timeFrameInit():
def dataMain(listOfStocks):
print('\nGathering dates and close values')
i = 0
while i < len(listOfStocks):
datesAndCloseList = Stock.datesAndClose(listOfStocks[i])
if datesAndCloseList == 'Not available':
if datesAndCloseList == 'N/A':
del listOfStocks[i]
if len(listOfStocks) == 0:
print('No stocks to analyze. Ending program')
# print('No stocks to analyze. Ending program')
cprint('No stocks to analyze. Ending program', 'white', 'on_red')
exit()
else:
listOfStocks[i].allDates = datesAndCloseList[0]
@ -1032,7 +1136,8 @@ def riskFreeRate():
('https://www.quandl.com/api/v3/datasets/USTREASURY/LONGTERMRATES.json?api_key=', apiQuandl))
# https://www.quandl.com/api/v3/datasets/USTREASURY/LONGTERMRATES.json?api_key=KUh3U3hxke9tCimjhWEF
print("\nSending request to:", url)
cprint('\nGet: ' + url, 'white', attrs=['dark'])
with Halo(spinner='dots'):
f = requests.get(url)
Functions.fromCache(f)
json_data = f.text
@ -1043,7 +1148,7 @@ def riskFreeRate():
print('Risk-free rate:', riskFreeRate, end='\n\n')
if f.status_code != 200:
print("Quandl not available")
print('Quandl not available')
print('Returning 2.50 as risk-free rate', end='\n\n')
# return 0.0250
return 2.50
@ -1052,13 +1157,14 @@ def riskFreeRate():
def returnMain(benchmark, listOfStocks):
print('\nCalculating unadjusted return, Sharpe ratio, Sortino ratio, and Treynor ratio\n')
cprint('\nCalculating return statistics\n', 'white', attrs=['underline'])
print('Getting risk-free rate from current 10-year treasury bill rates', end='\n\n')
Stock.riskFreeRate = riskFreeRate()
print(benchmark.name, end='\n\n')
cprint(benchmark.name, 'cyan')
benchmark.monthlyReturn = Stock.calcMonthlyReturn(benchmark)
if benchmark.monthlyReturn == 'Not available':
print('Please use a lower time frame\nEnding program')
if benchmark.monthlyReturn == 'N/A':
# print('Please use a lower time frame\nEnding program')
cprint('Please use a lower time frame. Ending program', 'white', 'on_red')
exit()
benchmark.averageMonthlyReturn = Stock.calcAverageMonthlyReturn(benchmark)
benchmark.standardDeviation = Stock.calcStandardDeviation(benchmark)
@ -1071,7 +1177,7 @@ def returnMain(benchmark, listOfStocks):
i = 0
while i < len(listOfStocks):
print('\n' + listOfStocks[i].name, end='\n\n')
cprint('\n' + listOfStocks[i].name, 'cyan')
# Make sure each date has a value for both the benchmark and the stock
list1 = []
@ -1088,11 +1194,13 @@ def returnMain(benchmark, listOfStocks):
# Calculate everything for each stock
listOfStocks[i].monthlyReturn = Stock.calcMonthlyReturn(
listOfStocks[i])
if listOfStocks[i].monthlyReturn == 'Not available':
print('Removing', listOfStocks[i].name, 'from list of stocks')
if listOfStocks[i].monthlyReturn == 'N/A':
print('Removing ' + listOfStocks[i].name + ' from list of stocks')
del listOfStocks[i]
if len(listOfStocks) == 0:
print('No stocks fit time frame. Ending program')
cprint('No stocks fit time frame. Ending program',
'white', 'on_red')
exit()
else:
listOfStocks[i].averageMonthlyReturn = Stock.calcAverageMonthlyReturn(
@ -1117,13 +1225,36 @@ def returnMain(benchmark, listOfStocks):
i += 1
print('\nNumber of stocks from original list that fit time frame:',
len(listOfStocks))
cprint('\nNumber of stocks from original list that fit time frame: ' +
str(len(listOfStocks)), 'green')
if len(listOfStocks) < 2:
print('Cannot proceed to the next step. Exiting program.')
#print('Cannot proceed to the next step. Exiting program.')
cprint('Cannot proceed to the next step. Exiting program.',
'white', 'on_red')
exit()
def outlierChoice():
print('\nWould you like to remove indicator outliers?')
print('1. Yes\n2. No')
found = False
while found == False:
outlierChoice = str(input('Choice: '))
if Functions.stringIsInt(outlierChoice):
if int(outlierChoice) == 1:
return True
elif int(outlierChoice) == 2:
return False
else:
print('Please enter 1 or 2')
elif outlierChoice.lower() == 'yes':
return True
elif outlierChoice.lower() == 'no':
return False
else:
print('Not valid. Please enter a number or yes or no.')
def indicatorInit():
# Runs correlation or regression study
indicatorFound = False
@ -1220,6 +1351,8 @@ def plot_regression_line(x, y, b, i):
plt.xlabel(Stock.indicator + ' (%)')
elif Stock.indicator == 'Persistence':
plt.xlabel(Stock.indicator + ' (Difference in average monthly return)')
elif Stock.indicator == 'Market Capitalization':
plt.xlabel(Stock.indicator + ' (millions)')
else:
plt.xlabel(Stock.indicator)
@ -1266,25 +1399,61 @@ def persistenceTimeFrame():
def indicatorMain(listOfStocks):
print('\n' + str(Stock.indicator) + '\n')
cprint('\n' + str(Stock.indicator) + '\n', 'white', attrs=['underline'])
listOfStocksIndicatorValues = []
for i in range(0, len(listOfStocks), 1):
print(listOfStocks[i].name)
if Stock.indicator != 'Persistence':
listOfStocks[i].indicatorValue = Stock.scrapeYahooFinance(
cprint(listOfStocks[i].name, 'cyan')
if Stock.indicator == 'Persistence':
listOfStocks[i].indicatorValue = Stock.calcPersistence(
listOfStocks[i])
else:
listOfStocks[i].indicatorValue = Stock.calcPersistence(
listOfStocks[i].indicatorValue = Stock.scrapeYahooFinance(
listOfStocks[i])
print('')
if listOfStocks[i].indicatorValue == 'Not available':
if listOfStocks[i].indicatorValue == 'N/A':
listOfStocks[i].indicatorValue = Stock.indicatorManual(
listOfStocks[i])
elif listOfStocks[i].indicatorValue == 'Stock':
print('Removing ' + listOfStocks[i].name + ' from list of stocks')
del listOfStocks[i]
if len(listOfStocks) < 2:
# print('Not able to go to the next step. Ending program')
cprint('Not able to go to the next step. Ending program',
'white', 'on_red')
exit()
listOfStocksIndicatorValues.append(listOfStocks[i].indicatorValue)
# Remove outliers
if Stock.removeOutliers == True:
cprint('\nRemoving outliers\n', 'white', attrs=['underline'])
temp = Functions.removeOutliers(listOfStocksIndicatorValues)
if temp[0] == listOfStocksIndicatorValues:
print('No outliers\n')
else:
print('First quartile:', temp[2], ', Median:', temp[3],
', Third quartile:', temp[4], 'Interquartile range:', temp[5])
# print('Original list:', listOfStocksIndicatorValues)
listOfStocksIndicatorValues = temp[0]
i = 0
while i < len(listOfStocks)-1:
for j in temp[1]:
if listOfStocks[i].indicatorValue == j:
print('Removing', listOfStocks[i].name, 'because it has a',
Stock.indicator.lower(), 'value of', listOfStocks[i].indicatorValue)
del listOfStocks[i]
i = i - 1
break
i += 1
# print('New list:', listOfStocksIndicatorValues, '\n')
print('')
# Calculate data
cprint('Calculating correlation and linear regression\n',
'white', attrs=['underline'])
listOfReturns = [] # A list that matches the above list with return values [[averageMonthlyReturn1, aAR2, aAR3], [sharpe1, sharpe2, sharpe3], etc.]
tempListOfReturns = []
for i in range(0, len(listOfStocks), 1):
@ -1318,7 +1487,7 @@ def indicatorMain(listOfStocks):
listOfReturnStrings = ['Average Monthly Return',
'Sharpe Ratio', 'Sortino Ratio', 'Treynor Ratio', 'Alpha']
for i in range(0, len(Stock.indicatorCorrelation), 1):
print('Correlation with ' + Stock.indicator.lower() + ' and ' +
print('Correlation for ' + Stock.indicator.lower() + ' and ' +
listOfReturnStrings[i].lower() + ': ' + str(Stock.indicatorCorrelation[i]))
Stock.indicatorRegression = calcIndicatorRegression(
@ -1331,10 +1500,29 @@ def indicatorMain(listOfStocks):
listOfReturnStrings[i].lower() + ': ' + formula)
def checkConfig(fileName):
if Functions.fileExists(fileName) == False:
return 'N/A'
file = open(fileName, 'r')
n = file.read()
file.close()
if Functions.validateJson(n) == False:
print('Config file is not valid')
return 'N/A'
t = json.loads(n)
r = t['Config']
return r
def main():
# Check config file for errors and if not, then use values
#! Only use this if you know it is exactly correct. I haven't spent much time debugging this
Stock.config = checkConfig('config.json')
# Check that all required packages are installed
if Stock.config == 'N/A':
packagesInstalled = Functions.checkPackages(
['numpy', 'requests', 'bs4', 'requests_cache'])
['numpy', 'requests', 'bs4', 'requests_cache', 'halo'])
if not packagesInstalled:
exit()
else:
@ -1343,18 +1531,15 @@ def main():
# Check python version is above 3.3
pythonVersionGood = Functions.checkPythonVersion()
if not pythonVersionGood:
return
exit()
# Test internet connection
internetConnection = Functions.isConnected()
if not internetConnection:
return
exit()
else:
Functions.getJoke()
# Functions.getJoke()
# Choose benchmark and makes it class Stock
benchmark = benchmarkInit()
# Add it to a list to work with other functions
@ -1373,10 +1558,67 @@ def main():
if Stock.indicator == 'Persistence':
Stock.persTimeFrame = persistenceTimeFrame()
# Choose whether to remove outliers or not
Stock.removeOutliers = outlierChoice()
else:
if Stock.config['Check Packages'] != False:
packagesInstalled = Functions.checkPackages(
['numpy', 'requests', 'bs4', 'requests_cache', 'halo'])
if not packagesInstalled:
exit()
else:
print('All required packages are installed')
if Stock.config['Check Python Version'] != False:
pythonVersionGood = Functions.checkPythonVersion()
if not pythonVersionGood:
exit()
if Stock.config['Check Internet Connection'] != False:
internetConnection = Functions.isConnected()
if not internetConnection:
exit()
if Stock.config['Get Joke'] != False:
Functions.getJoke()
benchmarksTicker = ['SPY', 'DJIA', 'VTHR', 'EFT']
if Stock.config['Benchmark'] in benchmarksTicker:
benchmark = Stock()
benchmark.setName(str(Stock.config['Benchmark']))
benchmarkAsList = [benchmark]
else:
benchmark = benchmarkInit()
benchmarkAsList = [benchmark]
listOfStocks = stocksInit()
if int(Stock.config['Time Frame']) >= 2:
timeFrame = int(Stock.config['Time Frame'])
else:
timeFrame = timeFrameInit()
Stock.timeFrame = timeFrame # Needs to be a global variable for all stocks
indicators = ['Expense Ratio',
'Market Capitalization', 'Turnover', 'Persistence']
if Stock.config['Indicator'] in indicators:
Stock.indicator = Stock.config['Indicator']
else:
Stock.indicator = indicatorInit()
if Stock.indicator == 'Persistence':
Stock.persTimeFrame = persistenceTimeFrame()
# Choose whether to remove outliers or not
if Stock.config['Remove Outliers'] != False:
Stock.removeOutliers = True
else:
Stock.removeOutliers = outlierChoice()
# Send async request to AV for listOfStocks and benchmark
asyncData(benchmark, listOfStocks)
# asyncData(benchmark, listOfStocks)
# Gather data for benchmark and stock(s)
cprint('\nGathering data', 'white', attrs=['underline'])
dataMain(benchmarkAsList)
dataMain(listOfStocks)
@ -1386,6 +1628,7 @@ def main():
# Choose indicator and calculate correlation with indicator
indicatorMain(listOfStocks)
print('')
exit()

168
modules/termcolor.py Normal file
View File

@ -0,0 +1,168 @@
# coding: utf-8
# Copyright (c) 2008-2011 Volvox Development Team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# Author: Konstantin Lepa <konstantin.lepa@gmail.com>
"""ANSII Color formatting for output in terminal."""
from __future__ import print_function
import os
__ALL__ = [ 'colored', 'cprint' ]
VERSION = (1, 1, 0)
ATTRIBUTES = dict(
list(zip([
'bold',
'dark',
'',
'underline',
'blink',
'',
'reverse',
'concealed'
],
list(range(1, 9))
))
)
del ATTRIBUTES['']
HIGHLIGHTS = dict(
list(zip([
'on_grey',
'on_red',
'on_green',
'on_yellow',
'on_blue',
'on_magenta',
'on_cyan',
'on_white'
],
list(range(40, 48))
))
)
COLORS = dict(
list(zip([
'grey',
'red',
'green',
'yellow',
'blue',
'magenta',
'cyan',
'white',
],
list(range(30, 38))
))
)
RESET = '\033[0m'
def colored(text, color=None, on_color=None, attrs=None):
"""Colorize text.
Available text colors:
red, green, yellow, blue, magenta, cyan, white.
Available text highlights:
on_red, on_green, on_yellow, on_blue, on_magenta, on_cyan, on_white.
Available attributes:
bold, dark, underline, blink, reverse, concealed.
Example:
colored('Hello, World!', 'red', 'on_grey', ['blue', 'blink'])
colored('Hello, World!', 'green')
"""
if os.getenv('ANSI_COLORS_DISABLED') is None:
fmt_str = '\033[%dm%s'
if color is not None:
text = fmt_str % (COLORS[color], text)
if on_color is not None:
text = fmt_str % (HIGHLIGHTS[on_color], text)
if attrs is not None:
for attr in attrs:
text = fmt_str % (ATTRIBUTES[attr], text)
text += RESET
return text
def cprint(text, color=None, on_color=None, attrs=None, **kwargs):
"""Print colorize text.
It accepts arguments of print function.
"""
print((colored(text, color, on_color, attrs)), **kwargs)
if __name__ == '__main__':
print('Current terminal type: %s' % os.getenv('TERM'))
print('Test basic colors:')
cprint('Grey color', 'grey')
cprint('Red color', 'red')
cprint('Green color', 'green')
cprint('Yellow color', 'yellow')
cprint('Blue color', 'blue')
cprint('Magenta color', 'magenta')
cprint('Cyan color', 'cyan')
cprint('White color', 'white')
print(('-' * 78))
print('Test highlights:')
cprint('On grey color', on_color='on_grey')
cprint('On red color', on_color='on_red')
cprint('On green color', on_color='on_green')
cprint('On yellow color', on_color='on_yellow')
cprint('On blue color', on_color='on_blue')
cprint('On magenta color', on_color='on_magenta')
cprint('On cyan color', on_color='on_cyan')
cprint('On white color', color='grey', on_color='on_white')
print('-' * 78)
print('Test attributes:')
cprint('Bold grey color', 'grey', attrs=['bold'])
cprint('Dark red color', 'red', attrs=['dark'])
cprint('Underline green color', 'green', attrs=['underline'])
cprint('Blink yellow color', 'yellow', attrs=['blink'])
cprint('Reversed blue color', 'blue', attrs=['reverse'])
cprint('Concealed Magenta color', 'magenta', attrs=['concealed'])
cprint('Bold underline reverse cyan color', 'cyan',
attrs=['bold', 'underline', 'reverse'])
cprint('Dark blink concealed white color', 'white',
attrs=['dark', 'blink', 'concealed'])
print(('-' * 78))
print('Test mixing:')
cprint('Underline red on grey color', 'red', 'on_grey',
['underline'])
cprint('Reversed green on red color', 'green', 'on_red', ['reverse'])

891
modules/yahoofinancials.py Normal file
View File

@ -0,0 +1,891 @@
"""
==============================
The Yahoo Financials Module
Version: 1.5
==============================
Author: Connor Sanders
Email: sandersconnor1@gmail.com
Version Released: 01/27/2019
Tested on Python 2.7, 3.3, 3.4, 3.5, 3.6, and 3.7
Copyright (c) 2019 Connor Sanders
MIT License
List of Included Functions:
1) get_financial_stmts(frequency, statement_type, reformat=True)
- frequency can be either 'annual' or 'quarterly'.
- statement_type can be 'income', 'balance', 'cash'.
- reformat optional value defaulted to true. Enter False for unprocessed raw data from Yahoo Finance.
2) get_stock_price_data(reformat=True)
- reformat optional value defaulted to true. Enter False for unprocessed raw data from Yahoo Finance.
3) get_stock_earnings_data(reformat=True)
- reformat optional value defaulted to true. Enter False for unprocessed raw data from Yahoo Finance.
4) get_summary_data(reformat=True)
- reformat optional value defaulted to true. Enter False for unprocessed raw data from Yahoo Finance.
5) get_stock_quote_type_data()
6) get_historical_price_data(start_date, end_date, time_interval)
- Gets historical price data for currencies, stocks, indexes, cryptocurrencies, and commodity futures.
- start_date should be entered in the 'YYYY-MM-DD' format. First day that financial data will be pulled.
- end_date should be entered in the 'YYYY-MM-DD' format. Last day that financial data will be pulled.
- time_interval can be either 'daily', 'weekly', or 'monthly'. Parameter determines the time period interval.
Usage Examples:
from yahoofinancials import YahooFinancials
#tickers = 'AAPL'
#or
tickers = ['AAPL', 'WFC', 'F', 'JPY=X', 'XRP-USD', 'GC=F']
yahoo_financials = YahooFinancials(tickers)
balance_sheet_data = yahoo_financials.get_financial_stmts('quarterly', 'balance')
earnings_data = yahoo_financials.get_stock_earnings_data()
historical_prices = yahoo_financials.get_historical_price_data('2015-01-15', '2017-10-15', 'weekly')
"""
import sys
import calendar
import re
from json import loads
import time
from bs4 import BeautifulSoup
import datetime
import pytz
import random
try:
from urllib import FancyURLopener
except:
from urllib.request import FancyURLopener
# track the last get timestamp to add a minimum delay between gets - be nice!
_lastget = 0
# Custom Exception class to handle custom error
class ManagedException(Exception):
pass
# Class used to open urls for financial data
class UrlOpener(FancyURLopener):
version = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.11) Gecko/20071127 Firefox/2.0.0.11'
# Class containing Yahoo Finance ETL Functionality
class YahooFinanceETL(object):
def __init__(self, ticker):
self.ticker = ticker.upper() if isinstance(ticker, str) else [t.upper() for t in ticker]
self._cache = {}
# Minimum interval between Yahoo Finance requests for this instance
_MIN_INTERVAL = 7
# Meta-data dictionaries for the classes to use
YAHOO_FINANCIAL_TYPES = {
'income': ['financials', 'incomeStatementHistory', 'incomeStatementHistoryQuarterly'],
'balance': ['balance-sheet', 'balanceSheetHistory', 'balanceSheetHistoryQuarterly', 'balanceSheetStatements'],
'cash': ['cash-flow', 'cashflowStatementHistory', 'cashflowStatementHistoryQuarterly', 'cashflowStatements'],
'keystats': ['key-statistics'],
'history': ['history']
}
# Interval value translation dictionary
_INTERVAL_DICT = {
'daily': '1d',
'weekly': '1wk',
'monthly': '1mo'
}
# Base Yahoo Finance URL for the class to build on
_BASE_YAHOO_URL = 'https://finance.yahoo.com/quote/'
# private static method to get the appropriate report type identifier
@staticmethod
def get_report_type(frequency):
if frequency == 'annual':
report_num = 1
else:
report_num = 2
return report_num
# Public static method to format date serial string to readable format and vice versa
@staticmethod
def format_date(in_date):
if isinstance(in_date, str):
form_date = int(calendar.timegm(time.strptime(in_date, '%Y-%m-%d')))
else:
form_date = str((datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=in_date)).date())
return form_date
# Private Static Method to Convert Eastern Time to UTC
@staticmethod
def _convert_to_utc(date, mask='%Y-%m-%d %H:%M:%S'):
utc = pytz.utc
eastern = pytz.timezone('US/Eastern')
date_ = datetime.datetime.strptime(date.replace(" 0:", " 12:"), mask)
date_eastern = eastern.localize(date_, is_dst=None)
date_utc = date_eastern.astimezone(utc)
return date_utc.strftime('%Y-%m-%d %H:%M:%S %Z%z')
# Private method to scrape data from yahoo finance
def _scrape_data(self, url, tech_type, statement_type):
global _lastget
if not self._cache.get(url):
now = int(time.time())
if _lastget and now - _lastget < self._MIN_INTERVAL:
time.sleep(self._MIN_INTERVAL - (now - _lastget) + 1)
now = int(time.time())
_lastget = now
urlopener = UrlOpener()
# Try to open the URL up to 10 times sleeping random time if something goes wrong
max_retry = 10
for i in range(0, max_retry):
response = urlopener.open(url)
if response.getcode() != 200:
time.sleep(random.randrange(10, 20))
else:
response_content = response.read()
soup = BeautifulSoup(response_content, "html.parser")
re_script = soup.find("script", text=re.compile("root.App.main"))
if re_script is not None:
script = re_script.text
self._cache[url] = loads(re.search("root.App.main\s+=\s+(\{.*\})", script).group(1))
response.close()
break
else:
time.sleep(random.randrange(10, 20))
if i == max_retry - 1:
# Raise a custom exception if we can't get the web page within max_retry attempts
raise ManagedException("Server replied with HTTP " + str(response.getcode()) +
" code while opening the url: " + str(url))
data = self._cache[url]
if tech_type == '' and statement_type != 'history':
stores = data["context"]["dispatcher"]["stores"]["QuoteSummaryStore"]
elif tech_type != '' and statement_type != 'history':
stores = data["context"]["dispatcher"]["stores"]["QuoteSummaryStore"][tech_type]
else:
stores = data["context"]["dispatcher"]["stores"]["HistoricalPriceStore"]
return stores
# Private static method to determine if a numerical value is in the data object being cleaned
@staticmethod
def _determine_numeric_value(value_dict):
if 'raw' in value_dict.keys():
numerical_val = value_dict['raw']
else:
numerical_val = None
return numerical_val
# Private method to format date serial string to readable format and vice versa
def _format_time(self, in_time):
form_date_time = datetime.datetime.fromtimestamp(int(in_time)).strftime('%Y-%m-%d %H:%M:%S')
utc_dt = self._convert_to_utc(form_date_time)
return utc_dt
# Private method to return the a sub dictionary entry for the earning report cleaning
def _get_cleaned_sub_dict_ent(self, key, val_list):
sub_list = []
for rec in val_list:
sub_sub_dict = {}
for k, v in rec.items():
if k == 'date':
sub_sub_dict_ent = {k: v}
else:
numerical_val = self._determine_numeric_value(v)
sub_sub_dict_ent = {k: numerical_val}
sub_sub_dict.update(sub_sub_dict_ent)
sub_list.append(sub_sub_dict)
sub_ent = {key: sub_list}
return sub_ent
# Private method to process raw earnings data and clean
def _clean_earnings_data(self, raw_data):
cleaned_data = {}
earnings_key = 'earningsData'
financials_key = 'financialsData'
for k, v in raw_data.items():
if k == 'earningsChart':
sub_dict = {}
for k2, v2 in v.items():
if k2 == 'quarterly':
sub_ent = self._get_cleaned_sub_dict_ent(k2, v2)
elif k2 == 'currentQuarterEstimate':
numerical_val = self._determine_numeric_value(v2)
sub_ent = {k2: numerical_val}
else:
sub_ent = {k2: v2}
sub_dict.update(sub_ent)
dict_ent = {earnings_key: sub_dict}
cleaned_data.update(dict_ent)
elif k == 'financialsChart':
sub_dict = {}
for k2, v2, in v.items():
sub_ent = self._get_cleaned_sub_dict_ent(k2, v2)
sub_dict.update(sub_ent)
dict_ent = {financials_key: sub_dict}
cleaned_data.update(dict_ent)
else:
if k != 'maxAge':
dict_ent = {k: v}
cleaned_data.update(dict_ent)
return cleaned_data
# Private method to clean summary and price reports
def _clean_reports(self, raw_data):
cleaned_dict = {}
if raw_data is None:
return None
for k, v in raw_data.items():
if 'Time' in k:
formatted_utc_time = self._format_time(v)
dict_ent = {k: formatted_utc_time}
elif 'Date' in k:
try:
formatted_date = v['fmt']
except (KeyError, TypeError):
formatted_date = '-'
dict_ent = {k: formatted_date}
elif v is None or isinstance(v, str) or isinstance(v, int) or isinstance(v, float):
dict_ent = {k: v}
# Python 2 and Unicode
elif sys.version_info < (3, 0) and isinstance(v, unicode):
dict_ent = {k: v}
else:
numerical_val = self._determine_numeric_value(v)
dict_ent = {k: numerical_val}
cleaned_dict.update(dict_ent)
return cleaned_dict
# Private Static Method to ensure ticker is URL encoded
@staticmethod
def _encode_ticker(ticker_str):
encoded_ticker = ticker_str.replace('=', '%3D')
return encoded_ticker
# Private method to get time interval code
def _build_historical_url(self, ticker, hist_oj):
url = self._BASE_YAHOO_URL + self._encode_ticker(ticker) + '/history?period1=' + str(hist_oj['start']) + \
'&period2=' + str(hist_oj['end']) + '&interval=' + hist_oj['interval'] + '&filter=history&frequency=' + \
hist_oj['interval']
return url
# Private Method to clean the dates of the newly returns historical stock data into readable format
def _clean_historical_data(self, hist_data, last_attempt=False):
data = {}
for k, v in hist_data.items():
if k == 'eventsData':
event_obj = {}
if isinstance(v, list):
dict_ent = {k: event_obj}
else:
for type_key, type_obj in v.items():
formatted_type_obj = {}
for date_key, date_obj in type_obj.items():
formatted_date_key = self.format_date(int(date_key))
cleaned_date = self.format_date(int(date_obj['date']))
date_obj.update({'formatted_date': cleaned_date})
formatted_type_obj.update({formatted_date_key: date_obj})
event_obj.update({type_key: formatted_type_obj})
dict_ent = {k: event_obj}
elif 'date' in k.lower():
if v is not None:
cleaned_date = self.format_date(v)
dict_ent = {k: {'formatted_date': cleaned_date, 'date': v}}
else:
if last_attempt is False:
return None
else:
dict_ent = {k: {'formatted_date': None, 'date': v}}
elif isinstance(v, list):
sub_dict_list = []
for sub_dict in v:
sub_dict['formatted_date'] = self.format_date(sub_dict['date'])
sub_dict_list.append(sub_dict)
dict_ent = {k: sub_dict_list}
else:
dict_ent = {k: v}
data.update(dict_ent)
return data
# Private Static Method to build API url for GET Request
@staticmethod
def _build_api_url(hist_obj, up_ticker):
base_url = "https://query1.finance.yahoo.com/v8/finance/chart/"
api_url = base_url + up_ticker + '?symbol=' + up_ticker + '&period1=' + str(hist_obj['start']) + '&period2=' + \
str(hist_obj['end']) + '&interval=' + hist_obj['interval']
api_url += '&events=div|split|earn&lang=en-US&region=US'
return api_url
# Private Method to get financial data via API Call
def _get_api_data(self, api_url, tries=0):
urlopener = UrlOpener()
response = urlopener.open(api_url)
if response.getcode() == 200:
res_content = response.read()
response.close()
if sys.version_info < (3, 0):
return loads(res_content)
return loads(res_content.decode('utf-8'))
else:
if tries < 5:
time.sleep(random.randrange(10, 20))
tries += 1
return self._get_api_data(api_url, tries)
else:
return None
# Private Method to clean API data
def _clean_api_data(self, api_url):
raw_data = self._get_api_data(api_url)
ret_obj = {}
ret_obj.update({'eventsData': []})
if raw_data is None:
return ret_obj
results = raw_data['chart']['result']
if results is None:
return ret_obj
for result in results:
tz_sub_dict = {}
ret_obj.update({'eventsData': result.get('events', {})})
ret_obj.update({'firstTradeDate': result['meta'].get('firstTradeDate', 'NA')})
ret_obj.update({'currency': result['meta'].get('currency', 'NA')})
ret_obj.update({'instrumentType': result['meta'].get('instrumentType', 'NA')})
tz_sub_dict.update({'gmtOffset': result['meta']['gmtoffset']})
ret_obj.update({'timeZone': tz_sub_dict})
timestamp_list = result['timestamp']
high_price_list = result['indicators']['quote'][0]['high']
low_price_list = result['indicators']['quote'][0]['low']
open_price_list = result['indicators']['quote'][0]['open']
close_price_list = result['indicators']['quote'][0]['close']
volume_list = result['indicators']['quote'][0]['volume']
adj_close_list = result['indicators']['adjclose'][0]['adjclose']
i = 0
prices_list = []
for timestamp in timestamp_list:
price_dict = {}
price_dict.update({'date': timestamp})
price_dict.update({'high': high_price_list[i]})
price_dict.update({'low': low_price_list[i]})
price_dict.update({'open': open_price_list[i]})
price_dict.update({'close': close_price_list[i]})
price_dict.update({'volume': volume_list[i]})
price_dict.update({'adjclose': adj_close_list[i]})
prices_list.append(price_dict)
i += 1
ret_obj.update({'prices': prices_list})
return ret_obj
# Private Method to Handle Recursive API Request
def _recursive_api_request(self, hist_obj, up_ticker, i=0):
api_url = self._build_api_url(hist_obj, up_ticker)
re_data = self._clean_api_data(api_url)
cleaned_re_data = self._clean_historical_data(re_data)
if cleaned_re_data is not None:
return cleaned_re_data
else:
if i < 3:
i += 1
return self._recursive_api_request(hist_obj, up_ticker, i)
else:
return self._clean_historical_data(re_data, True)
# Private Method to take scrapped data and build a data dictionary with
def _create_dict_ent(self, up_ticker, statement_type, tech_type, report_name, hist_obj):
YAHOO_URL = self._BASE_YAHOO_URL + up_ticker + '/' + self.YAHOO_FINANCIAL_TYPES[statement_type][0] + '?p=' +\
up_ticker
if tech_type == '' and statement_type != 'history':
try:
re_data = self._scrape_data(YAHOO_URL, tech_type, statement_type)
dict_ent = {up_ticker: re_data[u'' + report_name], 'dataType': report_name}
except KeyError:
re_data = None
dict_ent = {up_ticker: re_data, 'dataType': report_name}
elif tech_type != '' and statement_type != 'history':
try:
re_data = self._scrape_data(YAHOO_URL, tech_type, statement_type)
except KeyError:
re_data = None
dict_ent = {up_ticker: re_data}
else:
YAHOO_URL = self._build_historical_url(up_ticker, hist_obj)
try:
cleaned_re_data = self._recursive_api_request(hist_obj, up_ticker)
except KeyError:
try:
re_data = self._scrape_data(YAHOO_URL, tech_type, statement_type)
cleaned_re_data = self._clean_historical_data(re_data)
except KeyError:
cleaned_re_data = None
dict_ent = {up_ticker: cleaned_re_data}
return dict_ent
# Private method to return the stmt_id for the reformat_process
def _get_stmt_id(self, statement_type, raw_data):
stmt_id = ''
i = 0
for key in raw_data.keys():
if key in self.YAHOO_FINANCIAL_TYPES[statement_type.lower()]:
stmt_id = key
i += 1
if i != 1:
return None
return stmt_id
# Private Method for the Reformat Process
def _reformat_stmt_data_process(self, raw_data, statement_type):
final_data_list = []
if raw_data is not None:
stmt_id = self._get_stmt_id(statement_type, raw_data)
if stmt_id is None:
return final_data_list
hashed_data_list = raw_data[stmt_id]
for data_item in hashed_data_list:
data_date = ''
sub_data_dict = {}
for k, v in data_item.items():
if k == 'endDate':
data_date = v['fmt']
elif k != 'maxAge':
numerical_val = self._determine_numeric_value(v)
sub_dict_item = {k: numerical_val}
sub_data_dict.update(sub_dict_item)
dict_item = {data_date: sub_data_dict}
final_data_list.append(dict_item)
return final_data_list
else:
return raw_data
# Private Method to return subdict entry for the statement reformat process
def _get_sub_dict_ent(self, ticker, raw_data, statement_type):
form_data_list = self._reformat_stmt_data_process(raw_data[ticker], statement_type)
return {ticker: form_data_list}
# Public method to get time interval code
def get_time_code(self, time_interval):
interval_code = self._INTERVAL_DICT[time_interval.lower()]
return interval_code
# Public Method to get stock data
def get_stock_data(self, statement_type='income', tech_type='', report_name='', hist_obj={}):
data = {}
if isinstance(self.ticker, str):
dict_ent = self._create_dict_ent(self.ticker, statement_type, tech_type, report_name, hist_obj)
data.update(dict_ent)
else:
for tick in self.ticker:
try:
dict_ent = self._create_dict_ent(tick, statement_type, tech_type, report_name, hist_obj)
data.update(dict_ent)
except ManagedException:
print("Warning! Ticker: " + str(tick) + " error - " + str(ManagedException))
print("The process is still running...")
continue
return data
# Public Method to get technical stock datafrom yahoofinancials import YahooFinancials
def get_stock_tech_data(self, tech_type):
if tech_type == 'defaultKeyStatistics':
return self.get_stock_data(statement_type='keystats', tech_type=tech_type)
else:
return self.get_stock_data(tech_type=tech_type)
# Public Method to get reformatted statement data
def get_reformatted_stmt_data(self, raw_data, statement_type):
data_dict = {}
sub_dict = {}
data_type = raw_data['dataType']
if isinstance(self.ticker, str):
sub_dict_ent = self._get_sub_dict_ent(self.ticker, raw_data, statement_type)
sub_dict.update(sub_dict_ent)
dict_ent = {data_type: sub_dict}
data_dict.update(dict_ent)
else:
for tick in self.ticker:
sub_dict_ent = self._get_sub_dict_ent(tick, raw_data, statement_type)
sub_dict.update(sub_dict_ent)
dict_ent = {data_type: sub_dict}
data_dict.update(dict_ent)
return data_dict
# Public method to get cleaned summary and price report data
def get_clean_data(self, raw_report_data, report_type):
cleaned_data_dict = {}
if isinstance(self.ticker, str):
if report_type == 'earnings':
try:
cleaned_data = self._clean_earnings_data(raw_report_data[self.ticker])
except:
cleaned_data = None
else:
try:
cleaned_data = self._clean_reports(raw_report_data[self.ticker])
except:
cleaned_data = None
cleaned_data_dict.update({self.ticker: cleaned_data})
else:
for tick in self.ticker:
if report_type == 'earnings':
try:
cleaned_data = self._clean_earnings_data(raw_report_data[tick])
except:
cleaned_data = None
else:
try:
cleaned_data = self._clean_reports(raw_report_data[tick])
except:
cleaned_data = None
cleaned_data_dict.update({tick: cleaned_data})
return cleaned_data_dict
# Private method to handle dividend data requestsfrom yahoofinancials import YahooFinancials
def _handle_api_dividend_request(self, cur_ticker, start, end, interval):
re_dividends = []
test_url = 'https://query1.finance.yahoo.com/v8/finance/chart/' + cur_ticker + \
'?period1=' + str(start) + '&period2=' + str(end) + '&interval=' + interval + '&events=div'
div_dict = self._get_api_data(test_url)['chart']['result'][0]['events']['dividends']
for div_time_key, div_obj in div_dict.items():
dividend_obj = {
'date': div_obj['date'],
'formatted_date': self.format_date(int(div_obj['date'])),
'amount': div_obj.get('amount', None)
}
re_dividends.append(dividend_obj)
return sorted(re_dividends, key=lambda div: div['date'])
# Public method to get daily dividend data
def get_stock_dividend_data(self, start, end, interval):
interval_code = self.get_time_code(interval)
if isinstance(self.ticker, str):
try:
return {self.ticker: self._handle_api_dividend_request(self.ticker, start, end, interval_code)}
except:
return {self.ticker: None}
else:
re_data = {}
for tick in self.ticker:
try:
div_data = self._handle_api_dividend_request(tick, start, end, interval_code)
re_data.update({tick: div_data})
except:
re_data.update({tick: None})
return re_data
# Class containing methods to create stock data extracts
class YahooFinancials(YahooFinanceETL):
# Private method that handles financial statement extraction
def _run_financial_stmt(self, statement_type, report_num, reformat):
report_name = self.YAHOO_FINANCIAL_TYPES[statement_type][report_num]
if reformat:
raw_data = self.get_stock_data(statement_type, report_name=report_name)
data = self.get_reformatted_stmt_data(raw_data, statement_type)
else:
data = self.get_stock_data(statement_type, report_name=report_name)
return data
# Public Method for the user to get financial statement data
def get_financial_stmts(self, frequency, statement_type, reformat=True):
report_num = self.get_report_type(frequency)
if isinstance(statement_type, str):
data = self._run_financial_stmt(statement_type, report_num, reformat)
else:
data = {}
for stmt_type in statement_type:
re_data = self._run_financial_stmt(stmt_type, report_num, reformat)
data.update(re_data)
return data
# Public Method for the user to get stock price data
def get_stock_price_data(self, reformat=True):
if reformat:
return self.get_clean_data(self.get_stock_tech_data('price'), 'price')
else:
return self.get_stock_tech_data('price')
# Public Method for the user to return key-statistics data
def get_key_statistics_data(self, reformat=True):
if reformat:
return self.get_clean_data(self.get_stock_tech_data('defaultKeyStatistics'), 'defaultKeyStatistics')
else:
return self.get_stock_tech_data('defaultKeyStatistics')
# Public Method for the user to get stock earnings data
def get_stock_earnings_data(self, reformat=True):
if reformat:
return self.get_clean_data(self.get_stock_tech_data('earnings'), 'earnings')
else:
return self.get_stock_tech_data('earnings')
# Public Method for the user to get stock summary data
def get_summary_data(self, reformat=True):
if reformat:
return self.get_clean_data(self.get_stock_tech_data('summaryDetail'), 'summaryDetail')
else:
return self.get_stock_tech_data('summaryDetail')
# Public Method for the user to get the yahoo summary url
def get_stock_summary_url(self):
if isinstance(self.ticker, str):
return self._BASE_YAHOO_URL + self.ticker
return {t: self._BASE_YAHOO_URL + t for t in self.ticker}
# Public Method for the user to get stock quote data
def get_stock_quote_type_data(self):
return self.get_stock_tech_data('quoteType')
# Public Method for user to get historical price data with
def get_historical_price_data(self, start_date, end_date, time_interval):
interval_code = self.get_time_code(time_interval)
start = self.format_date(start_date)
end = self.format_date(end_date)
hist_obj = {'start': start, 'end': end, 'interval': interval_code}
return self.get_stock_data('history', hist_obj=hist_obj)
# Private Method for Functions needing stock_price_data
def _stock_price_data(self, data_field):
if isinstance(self.ticker, str):
if self.get_stock_price_data()[self.ticker] is None:
return None
return self.get_stock_price_data()[self.ticker].get(data_field, None)
else:
ret_obj = {}
for tick in self.ticker:
if self.get_stock_price_data()[tick] is None:
ret_obj.update({tick: None})
else:
ret_obj.update({tick: self.get_stock_price_data()[tick].get(data_field, None)})
return ret_obj
# Private Method for Functions needing stock_price_data
def _stock_summary_data(self, data_field):
if isinstance(self.ticker, str):
if self.get_summary_data()[self.ticker] is None:
return None
return self.get_summary_data()[self.ticker].get(data_field, None)
else:
ret_obj = {}
for tick in self.ticker:
if self.get_summary_data()[tick] is None:
ret_obj.update({tick: None})
else:
ret_obj.update({tick: self.get_summary_data()[tick].get(data_field, None)})
return ret_obj
# Private Method for Functions needing financial statement data
def _financial_statement_data(self, stmt_type, stmt_code, field_name, freq):
re_data = self.get_financial_stmts(freq, stmt_type)[stmt_code]
if isinstance(self.ticker, str):
try:
date_key = re_data[self.ticker][0].keys()[0]
except (IndexError, AttributeError, TypeError):
date_key = list(re_data[self.ticker][0])[0]
data = re_data[self.ticker][0][date_key][field_name]
else:
data = {}
for tick in self.ticker:
try:
date_key = re_data[tick][0].keys()[0]
except:
try:
date_key = list(re_data[tick][0].keys())[0]
except:
date_key = None
if date_key is not None:
sub_data = re_data[tick][0][date_key][field_name]
data.update({tick: sub_data})
else:
data.update({tick: None})
return data
# Public method to get daily dividend data
def get_daily_dividend_data(self, start_date, end_date):
start = self.format_date(start_date)
end = self.format_date(end_date)
return self.get_stock_dividend_data(start, end, 'daily')
# Public Price Data Methods
def get_current_price(self):
return self._stock_price_data('regularMarketPrice')
def get_current_change(self):
return self._stock_price_data('regularMarketChange')
def get_current_percent_change(self):
return self._stock_price_data('regularMarketChangePercent')
def get_current_volume(self):
return self._stock_price_data('regularMarketVolume')
def get_prev_close_price(self):
return self._stock_price_data('regularMarketPreviousClose')
def get_open_price(self):
return self._stock_price_data('regularMarketOpen')
def get_ten_day_avg_daily_volume(self):
return self._stock_price_data('averageDailyVolume10Day')
def get_three_month_avg_daily_volume(self):
return self._stock_price_data('averageDailyVolume3Month')
def get_stock_exchange(self):
return self._stock_price_data('exchangeName')
def get_market_cap(self):
return self._stock_price_data('marketCap')
def get_daily_low(self):
return self._stock_price_data('regularMarketDayLow')
def get_daily_high(self):
return self._stock_price_data('regularMarketDayHigh')
def get_currency(self):
return self._stock_price_data('currency')
# Public Summary Data Methods
def get_yearly_high(self):
return self._stock_summary_data('fiftyTwoWeekHigh')
def get_yearly_low(self):
return self._stock_summary_data('fiftyTwoWeekLow')
def get_dividend_yield(self):
return self._stock_summary_data('dividendYield')
def get_annual_avg_div_yield(self):
return self._stock_summary_data('trailingAnnualDividendYield')
def get_five_yr_avg_div_yield(self):
return self._stock_summary_data('fiveYearAvgDividendYield')
def get_dividend_rate(self):
return self._stock_summary_data('dividendRate')
def get_annual_avg_div_rate(self):
return self._stock_summary_data('trailingAnnualDividendRate')
def get_50day_moving_avg(self):
return self._stock_summary_data('fiftyDayAverage')
def get_200day_moving_avg(self):
return self._stock_summary_data('twoHundredDayAverage')
def get_beta(self):
return self._stock_summary_data('beta')
def get_payout_ratio(self):
return self._stock_summary_data('payoutRatio')
def get_pe_ratio(self):
return self._stock_summary_data('trailingPE')
def get_price_to_sales(self):
return self._stock_summary_data('priceToSalesTrailing12Months')
def get_exdividend_date(self):
return self._stock_summary_data('exDividendDate')
# Financial Statement Data Methods
def get_book_value(self):
return self._financial_statement_data('balance', 'balanceSheetHistoryQuarterly',
'totalStockholderEquity', 'quarterly')
def get_ebit(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'ebit', 'annual')
def get_net_income(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'netIncome', 'annual')
def get_interest_expense(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'interestExpense', 'annual')
def get_operating_income(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'operatingIncome', 'annual')
def get_total_operating_expense(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'totalOperatingExpenses', 'annual')
def get_total_revenue(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'totalRevenue', 'annual')
def get_cost_of_revenue(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'costOfRevenue', 'annual')
def get_income_before_tax(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'incomeBeforeTax', 'annual')
def get_income_tax_expense(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'incomeTaxExpense', 'annual')
def get_gross_profit(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'grossProfit', 'annual')
def get_net_income_from_continuing_ops(self):
return self._financial_statement_data('income', 'incomeStatementHistory',
'netIncomeFromContinuingOps', 'annual')
def get_research_and_development(self):
return self._financial_statement_data('income', 'incomeStatementHistory', 'researchDevelopment', 'annual')
# Calculated Financial Methods
def get_earnings_per_share(self):
price_data = self.get_current_price()
pe_ratio = self.get_pe_ratio()
if isinstance(self.ticker, str):
if price_data is not None and pe_ratio is not None:
return price_data / pe_ratio
else:
return None
else:
ret_obj = {}
for tick in self.ticker:
if price_data[tick] is not None and pe_ratio[tick] is not None:
ret_obj.update({tick: price_data[tick] / pe_ratio[tick]})
else:
ret_obj.update({tick: None})
return ret_obj
def get_num_shares_outstanding(self, price_type='current'):
today_low = self._stock_summary_data('dayHigh')
today_high = self._stock_summary_data('dayLow')
cur_market_cap = self._stock_summary_data('marketCap')
if isinstance(self.ticker, str):
if cur_market_cap is not None:
if price_type == 'current':
current = self.get_current_price()
if current is not None:
today_average = current
else:
return None
else:
if today_high is not None and today_low is not None:
today_average = (today_high + today_low) / 2
else:
return None
return cur_market_cap / today_average
else:
return None
else:
ret_obj = {}
for tick in self.ticker:
if cur_market_cap[tick] is not None:
if price_type == 'current':
current = self.get_current_price()
if current[tick] is not None:
ret_obj.update({tick: cur_market_cap[tick] / current[tick]})
else:
ret_obj.update({tick: None})
else:
if today_low[tick] is not None and today_high[tick] is not None:
today_average = (today_high[tick] + today_low[tick]) / 2
ret_obj.update({tick: cur_market_cap[tick] / today_average})
else:
ret_obj.update({tick: None})
else:
ret_obj.update({tick: None})
return ret_obj

View File

@ -1,4 +1,6 @@
requests~=2.21.0
numpy~=1.15.4
beautifulsoup4~=4.7.1
halo~=0.0.23
requests-cache~=0.4.13 # NOT REQUIRED
yahoofinancials~=1.5 # NOT REQUIRED

10
stocks.txt Normal file
View File

@ -0,0 +1,10 @@
VFINX
SMARX
BRASX
USIBX
DSIAX
TIHYX
SGYAX
TPLGX
PREFX
FBGRX